15-744: Computer Networking

L-10 Wireless in the Real World

Wireless Challenges
- Force us to rethink many assumptions
- Need to share airwaves rather than wire
 - Don’t know what hosts are involved
 - Host may not be using same link technology
- Mobility
- Other characteristics of wireless
 - Noisy → lots of losses
 - Slow
 - Interaction of multiple transmitters at receiver
 - Collisions, capture, interference
 - Multipath interference

Wireless in the Real World
- Real world deployment patterns
- Mesh networks and deployments
- Assigned reading
 - Architecture and Evaluation of an Unplanned 802.11b Mesh Network
 - White Space Networking with Wi-Fi like Connectivity

Overview
- 802.11
 - Deployment patterns
 - Reaction to interference
 - Interference mitigation
- Mesh networks
 - Architecture
 - Measurements
- White space networks
Characterizing Current Deployments

- Datasets
 - Place Lab: 28,000 APs
 - MAC, ESSID, GPS
 - Selected US cities
 - www.placelab.org
 - Wifimaps: 300,000 APs
 - MAC, ESSID, Channel, GPS (derived)
 - wifimaps.com
 - Pittsburgh Wardrive: 667 APs
 - MAC, ESSID, Channel, Supported Rates, GPS

AP Stats, Degrees: PlaceLab

(Place Lab: 28000 APs, MAC, ESSID, GPS)

<table>
<thead>
<tr>
<th>City</th>
<th>#APs</th>
<th>Max degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland</td>
<td>8683</td>
<td>54</td>
</tr>
<tr>
<td>San Diego</td>
<td>7934</td>
<td>76</td>
</tr>
<tr>
<td>San Francisco</td>
<td>3037</td>
<td>85</td>
</tr>
<tr>
<td>Boston</td>
<td>2551</td>
<td>39</td>
</tr>
</tbody>
</table>

Degree Distribution: Place Lab

Unmanaged Devices

WifiMaps.com

(300,000 APs, MAC, ESSID, Channel)

<table>
<thead>
<tr>
<th>Channel</th>
<th>%age</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

- Most users don’t change default channel
- Channel selection must be automated
Growing Interference in Unlicensed Bands

- Anecdotal evidence of problems, but how severe?
- Characterize how 802.11 operates under interference in practice

What do we expect?

- Throughput to decrease linearly with interference
- There to be lots of options for 802.11 devices to tolerate interference
 - Bit-rate adaptation
 - Power control
 - FEC
 - Packet size variation
 - Spread-spectrum processing
 - Transmission and reception diversity

Key Questions

- How damaging can a low-power and/or narrow-band interferer be?
- How can today’s hardware tolerate interference well?
 - What 802.11 options work well, and why?

What we see

- Effects of interference more severe in practice
- Caused by hardware limitations of commodity cards, which theory doesn’t model
Experimental Setup

- Access Point

- 802.11 Client

- UDP flow

- 802.11 Interferer

Timing Recovery Interference

- Interferer sends continuous SYNC pattern
- Interferes with packet acquisition (PHY reception errors)

802.11 Receiver Path

- To RF Amplifiers
- ADC
- 16-bit samples
- Timing Recovery
- Barker Correlator
- Preamble Detector
- Header CRC-16 Checker
- Descrambler
- Demodulator
- Data (includes beacons)

Interference Management

- Interference will get worse
 - Density/device diversity is increasing
 - Unlicensed spectrum is not keeping up

- Spectrum management
 - “Channel hopping” 802.11 effective at mitigating some performance problems [Sigcomm07]
 - Coordinated spectrum use – based on RF sensor network

- Transmission power control
 - Enable spatial reuse of spectrum by controlling transmit power
 - Must also adapt carrier sense behavior to take advantage
Overview

- 802.11
 - Deployment patterns
 - Reaction to interference
 - Interference mitigation

- Mesh networks
 - Architecture
 - Measurements

- White space networks

Roofnet

- Share a few wired Internet connections

Goals

- Operate without extensive planning or central management
- Provide wide coverage and acceptable performance

Design decisions

- Unconstrained node placement
- Omni-directional antennas
- Multi-hop routing
- Optimization of routing for throughput in a slowly changing network

Roofnet Design

- Deployment
 - Over an area of about four square kilometers in Cambridge, Massachusetts
 - Most nodes are located in buildings
 - 3~4 story apartment buildings
 - 8 nodes are in taller buildings
 - Each Roofnet node is hosted by a volunteer user

- Hardware
 - PC, omni-directional antenna, hard drive …
 - 802.11b card
 - RTS/CTS disabled
 - Share the same 802.11b channel
 - Non-standard “pseudo-IBSS” mode
 - Similar to standard 802.11b IBSS (ad hoc)
 - Omits beacon and BSSID (network ID)

Roofnet Node Map

1 kilometer
Software and Auto-Configuration

- Linux, routing software, DHCP server, web server …
- Automatically solve a number of problems
 - Allocating addresses
 - Finding a gateway between Roofnet and the Internet
 - Choosing a good multi-hop route to that gateway
- Addressing
 - Roofnet carries IP packets inside its own header format and routing protocol
 - Assign addresses automatically
 - Only meaningful inside Roofnet, not globally routable
 - The address of Roofnet nodes
 - Low 24 bits are the low 24 bits of the node’s Ethernet address
 - High 8 bits are an unused class-A IP address block
 - The address of hosts
 - Allocate 192.168.1.x via DHCP and use NAT between the Ethernet and Roofnet

Gateway and Internet Access

- A small fraction of Roofnet users will share their wired Internet access links
- Nodes which can reach the Internet
 - Advertise itself to Roofnet as an Internet gateway
 - Acts as a NAT for connection from Roofnet to the Internet
- Other nodes
 - Select the gateway which has the best route metric
 - Roofnet currently has four Internet gateways
Roofnet

Lossy Links are Common

Delivery Probabilities are Uniformly Distributed

Delivery vs. SNR

- SNR not a good predictor
Is it Bursty Interference?
- May interfere but not impact SNR measurement

Two Different Roofnet Links
- Top is typical of bursty interference, bottom is not
- Most links are like the bottom

Is it Multipath Interference?
- Simulate with channel emulator

A Plausible Explanation
- Multi-path can produce intermediate loss rates
- Appropriate multi-path delay is possible due to long-links
Key Implications

- Lack of a link abstraction!
 - Links aren’t on or off… sometimes in-between

- Protocols must take advantage of these intermediate quality links to perform well

- How unique is this to Roofnet?
 - Cards designed for indoor environments used outdoors

Roofnet Design - Routing Protocol

- Srcr
 - Find the highest throughput route between any pair of Roofnet nodes
 - Source-routes data packets like DSR
 - Maintains a partial database of link metrics

- Learning fresh link metrics
 - Forward a packet
 - Flood to find a route
 - Overhear queries and responses

- Finding a route to a gateway
 - Each Roofnet gateway periodically floods a dummy query
 - When a node receives a new query, it adds the link metric information
 - The node computes the best route
 - The node re-broadcasts the query
 - Send a notification to a failed packet’s source if the link condition is changed

Roofnet Design

- Routing Metric
 - ETT (Estimated Transmission Time) metric
 \[t = \frac{1}{\sum \frac{1}{x_i}} \]
 - Srcr chooses routes with ETT
 - Predict the total amount of time it would take to send a data packet
 - Take into account link’s highest-throughput transmit bit-rate and delivery probability
 - Each Roofnet node sends periodic 1500-byte broadcasts

- Bit-rate Selection
 - 802.11b transmit bit-rates
 - 1, 2, 5.5, 11 Mbits/s
 - SampleRate
 - Judge which bit-rate will provide the highest throughput
 - Base decisions on actual data transmission
 - Periodically sends a packet at some other bit-rate

ETX measurement results

- Delivery is probabilistic
 - A 1/r^2 model wouldn’t really predict this!
 - Sharp cutoff (by spec) of “good” vs “no” reception. Intermediate loss range band is just a few dB wide!

- Why?
 - Biggest factor: Multi-path interference
 - 802.11 receivers can suppress reflections < 250ns
 - Outdoor reflections delay often > 1 \mu sec
 - Delay offsets == symbol time look like valid symbols (large interference)
 - Offsets != symbol time look like random noise
 - Small changes in delay == big changes in loss rate
Deciding Between Links

• Most early protocols: Hop Count
 • Link-layer retransmission can mask some loss
 • But: a 50% loss rate means your link is only 50% as fast!
• Threshold?
 • Can sacrifice connectivity. 😊
 • Isn’t a 90% path better than an 80% path?
• Real life goal: Find highest throughput paths

Is there a better metric?

• Cut-off threshold
 • Disconnected network
• Product of link delivery ratio along path
 • Does not account for inter-hop interference
• Bottleneck link (highest-loss-ratio link)
 • Same as above
• End-to-end delay
 • Depends on interface queue lengths

ETX Metric Design Goals

• Find high throughput paths
• Account for lossy links
• Account for asymmetric links
• Account for inter-link interference
• Independent of network load (don’t incorporate congestion)

Forwarding Packets is Expensive

• Throughput of 802.11b =~ 11Mbits/s
 • In reality, you can get about 5.
• What is throughput of a chain?
 • A → B → C
 • A → B → C → D
 • Assume minimum power for radios.
• Routing metric should take this into account! Affects throughput
ETX

- Measure each link’s delivery probability with broadcast probes (& measure reverse)
- \(P(\text{delivery}) = (d_t \ast d_r) \) (ACK must be delivered too…)
- Link ETX = 1 / \(P(\text{delivery}) \)
- Route ETX = \(\Sigma \) link ETX
 - Assumes all hops interfere - not true, but seems to work okay so far

ETX: Sanity Checks

- ETX of perfect 1-hop path: 1
- ETX of 50% delivery 1-hop path: 2
- ETX of perfect 3-hop path: 3

- (So, e.g., a 50% loss path is better than a perfect 3-hop path! A threshold would probably fail here…)

Rate Adaptation

- What if links @ different rates?
- ETT – expected *transmission time*
 - \(\text{ETX} / \text{Link rate} = 1 / (P(\text{delivery}) \ast \text{Rate}) \)
- What is best rate for link?
 - The one that maximizes ETT for the link!
 - SampleRate is a technique to adaptively figure this out.

Discussion

- Value of implementation & measurement
 - Simulators did not “do” multipath
 - Routing protocols dealt with the simulation environment just fine
 - Real world behaved differently and really broke a lot of the proposed protocols that worked so well in simulation!
 - Rehash: Wireless differs from wired…
 - Metrics: Optimize what matters; hop count often a very bad proxy in wireless
 - What we didn’t look at: routing protocol overhead
 - One cool area: Geographic routing
Overview

- 802.11
 - Deployment patterns
 - Reaction to interference
 - Interference mitigation

- Mesh networks
 - Architecture
 - Measurements

- White space networks

What are White Spaces?

- Each channel is 6 MHz wide
- FCC Regulations:
 - Sense TV station and Mic
 - Portable devices on channels
- Unoccupied TV Channels

The Promise of White Spaces

- More Spectrum
- Longer Range
 - up to 3-4x of Wi-Fi
White Spaces Spectrum Availability

Differences from ISM (Wi-Fi)

Fragmentation
Variable channel widths

Location impacts spectrum availability ➔ Spectrum exhibits spatial variation

Channel Assignment in Wi-Fi

Fixed Width Channels ➔ Optimize which channel to use
Spectrum Assignment in WhiteFi

Spectrum Assignment Problem

- **Goal**: Maximize Throughput
- **Include**: Spectrum at clients
- **Assign**: Center Channel & Width

Fragmentation ⇒ Optimize for both, center channel and width

Spatial Variation ⇒ BS must use channel if free at client

Intuition

- Use widest possible channel
- But
- Limited by most busy channel

 - Carrier Sense Across All Channels
 - All channels must be free
 - $\rho_{BS}(2 \text{ and } 3 \text{ are free}) = \rho_{BS}(2 \text{ is free}) \times \rho_{BS}(3 \text{ is free})$

Tradeoff between wider channel widths and opportunity to transmit on each channel

Accounting for Spatial Variation

- 1 2 3 4 5
- 1 2 3 4 5

Discovering a Base Station

- Discovery Time = $O(B \times W)$

 - Fragmentation ⇒ Try different center channel and widths
 - channels used by the BS?
SIFT, by example

SIFT

Pattern match in time domain

ADC

SIFT

Time

Amplitude

Evaluation

• Basic Performance (Multi-hop TCP)
 • The routes with low hop-count have much higher throughput
 • Multi-hop routes suffer from inter-hop collisions

Evaluation

• Method
 • Multi-hop TCP
 • 15 second one-way bulk TCP transfer between each pair of Roofnet nodes
 • Single-hop TCP
 • The direct radio link between each pair of routes
 • Loss matrix
 • The loss rate between each pair of nodes using 1500-byte broadcasts
 • Multi-hop density
 • TCP throughput between a fixed set of four nodes
 • Varying the number of Roofnet nodes that are participating in routing

Evaluation

• Basic Performance (Multi-hop TCP)
 • TCP throughput to each node from its chosen gateway
 • Round-trip latencies for 84-byte ping packets to estimate interactive delay

<table>
<thead>
<tr>
<th>Hops</th>
<th>Number of nodes</th>
<th>Throughput (kbps/sec)</th>
<th>Latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>2762</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>940</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>552</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>379</td>
<td>43</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>80</td>
<td>37</td>
</tr>
<tr>
<td>Avg: 2.3</td>
<td>Total: 33</td>
<td>Avg: 1350</td>
<td>Avg: 22</td>
</tr>
</tbody>
</table>
• **Link Quality and Distance (Single-hop TCP, Multi-hop TCP)**
 - Most available links are between 500m and 1300m and give 500 kbits/s

• **Simple Alternatives**
 - Maximize the number of additional nodes with non-zero throughput to some gateway
 - Ties are broken by average throughput

• **Evaluation**

 - **Link Quality and Distance (Multi-hop TCP, Loss matrix)**
 - Median delivery probability is 0.8
 - 1/4 links have loss rates of 50% or more
 - 802.11 detects the losses with its ACK mechanism and resends the packets

 - **Inter-hop Interference (Multi-hop TCP, Single-hop TCP)**
 - Concurrent transmissions on different hops of a route collide and cause packet loss
Roofnet Summary

- The network's architectures favors
 - Ease of deployment
 - Omni-directional antennas
 - Self-configuring software
 - Link-quality-aware multi-hop routing
- Evaluation of network performance
 - Average throughput between nodes is 627kbits/s
 - Well served by just a few gateways whose position is determined by convenience
 - Multi-hop mesh increases both connectivity and throughput

Roofnet Link Level Measurements

- Analyze cause of packet loss
- Neighbor Abstraction
 - Ability to hear control packets or No Interference
 - Strong correlation between BER and S/N
- RoofNet pairs communicate
 - At intermediate loss rates
 - Temporal Variation
 - Spatial Variation