Fundamental Design Issues for the Future Internet
Aka. Back to the Future

October 1, 2010
Different applications have different 'demand functions', e.g. download vs. streaming video.

Common type of utility functions: elastic, hard, delay-adaptive, rate-adaptive.

Total utility $V = \sum U_i(s_i)$ can be quite complex, so priorities of different services need to be varied.

There is a need to recognize more delay-sensitive clients as video and audio performances degrades badly once bandwidth is below the intrinsic generation rate.
How to provide/request service

- Letting network classify service vs. users specify their types of service.
- Explicit Request
 - Pricing?
 - Flexibility in service model?
- Other forms of implicit services such as link sharing can be incrementally deployed.
Reasons for Admission Control

- Overloads can happen suddenly across the entire network. E.g. $n + 1$ applications with hard utility function sharing a link which can support n of them.

- Even if network is over-provisioned, a few users will still cause congestion. Leading to a much worse overall user experience.

Shenker 95
Most seem to think the Internet today controls congestion in a much less structured way than what the paper suggested.

Some believe that we have yet to reach the point where such controls are needed, some believe over-provisioning makes them not as necessary.

Quite a few mentioned the low cost of increasing bandwidth compared to the cost of deploying these control methods makes them less appealing.
Video Survey. Review of the state-of-art peer-to-peer Internet video broadcast, as well as some key challenges.

CSZ92. Division of traffic into guaranteed traffic and predicted service, and gave a unified scheduling algorithm.

Clark98. Demonstrated a need to distinguish users with different transfer objects, and use service allocation profiles to separate demands.

CongestionManager99. Gave an end-to-end architecture for managing Internet congestion to ensure proper behavior and allow applications to easily adapt to congestion.