Random Early Detection (RED)

15-744 Computer Networks

Gunhee Kim

September 24, 2010

Why We Need it?

• We learned TCP congestion control last week!
 – Sent, ACKed, congestion window, AIMD, etc.

• Issues
 – TCP needs to create losses to find the available bandwidth of the connection.
 – Who’s the best to detect congestion and resolve it?
 – Full queue of a gateway significantly increases the average delay.
 – Congestion avoidance by Gateway!

Key Design Concepts of RED (1/2)

• How to know?
 – Average queue sizes
 – Effect of a low-pass filter
 – Busty traffic vs persistent traffic

• How to let them know?
 – Drop a packet or Mark a packet probabilistically.
 – Dropping requires end hosts to follow the TCP rule
 – Marking requires end hosts to understand the special bits

Key Design Concepts of RED (2/2)

• Avoid global synchronization
 – Prevents underutilization

• Fairness
 – More share of the bandwidth, more likely to be dropped

• Randomly drop or mark a packet with prob p!
Discussion

• Based on other literature and Class Discussion Pages

• Dropping or Marking a packet?
 – Understandable in the TCP context, may not be in other protocols or to ignorant users.
 – In ATM network, if one cell is dropped, then all the others are useless.

• Queue?
 – Largely rely on FIFO
 – How to determine optimum average queue size for max throughput and min delay for various configurations?
 – Scheduling or multi-level queue?