15-744: Computer Networking

L-1 Intro to Computer Networks

Outline

• Administrivia
• Layering

Who’s Who?

• Professor: Srinivasan Seshan
 • http://www.cs.cmu.edu/~srini
 • srini@cmu.edu
 • Office hours: Friday 4:00-5:00
• TA: None!
• Course info
 • http://www.cs.cmu.edu/~srini/15-744/F09/

Objectives

• Understand the state-of-the-art in network protocols, architectures and applications
• Understand how networking research is done
 • Teach the typical constraints and thought processes used in networking research
• How is class different from undergraduate networking (15-441)
 • Training network programmers vs. training network researchers
Web Page

- Check regularly!!
- Course schedule
- Reading list
- Lecture notes
- Announcements
- Assignments
- Project ideas
- Exams

Discussion Site

 - Please visit http://great-white.cmcl.cs.cmu.edu:3000 and create an account. Open the collection CMU 15-744: Computer Networks -- Fall 09. You should then add yourself to the collection using the subscription code: “15744”.
 - For each lecture, post a brief comment about each paper:
 - Since I would like to read the reviews before the lecture, you should have this done by 5pm the day before the lecture.
 - Learn to critique and appreciate systems papers
 - Try to be positive…
 - Why or why not keep this paper in syllabus?
 - What issues are left open for future research?
 - What are the important implications of the work?
 - What would have done differently?

Course Materials

- Research papers
 - Links to ps or pdf on Web page
 - Combination of classic and recent work
 - ~40 papers
 - Optional readings
- Recommended textbooks
 - For students not familiar with networking
 - Peterson & Davie or Kurose & Ross

Grading

- Homework assignments (20%)
 - 4 Problem sets & hands-on assignments
- Class + discussion site participation (10%)
- 2 person project (35%)
- Midterm exam + final exam (35%)
 - Closed book, in-class
Class Coverage

• Little coverage of physical and data link layer
• Little coverage of undergraduate material
 • Students expected to know this
• Focus on network to application layer
• We will deal with:
 • Protocol rules and algorithms
 • Investigate protocol trade-offs
 • Why this way and not another?

Lecture Topics

Traditional
• Layering
• Internet architecture
• Routing (IP)
• Transport (TCP)
• Queue management (FQ, RED)
• Naming (DNS)

Recent Topics
• Machine rooms
• Mobility/wireless
• Active networks
• QoS
• Security
• Network measurement
• Overlay networks
• P2P applications

Outline

• Administrivia
• Layering

This/Next Lecture: Design Considerations

• How to determine split of functionality
 • Across protocol layers
 • Across network nodes
• Assigned Reading
 • [SRC84] End-to-end Arguments in System Design
 • [Cla88] Design Philosophy of the DARPA Internet Protocols
What is the Objective of Networking?

- Communication between applications on different computers
- Must understand application needs/demands
 - Traffic data rate
 - Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - Delay sensitivity
 - Loss sensitivity

Packet Switching (Internet)

- Interleave packets from different sources
- Efficient: resources used on demand
 - Statistical multiplexing
- General
 - Multiple types of applications
 - Accommodates bursty traffic
 - Addition of queues

Back in the Old Days...

- Packet Switching
 - Interleave packets from different sources
 - Efficient: resources used on demand
 - Statistical multiplexing
 - General
 - Multiple types of applications
 - Accommodates bursty traffic
 - Addition of queues
Characteristics of Packet Switching

- Store and forward
 - Packets are self contained units
 - Can use alternate paths – reordering
- Contention
 - Congestion
 - Delay

Internet[work]

- A collection of interconnected networks
- Host: network endpoints (computer, PDA, light switch, …)
- Router: node that connects networks
- Internet vs. internet

Challenge

- Many differences between networks
 - Address formats
 - Performance – bandwidth/latency
 - Packet size
 - Loss rate/pattern/handling
 - Routing
- How to translate between various network technologies?

How To Find Nodes?

Need naming and routing
Naming

What's the IP address for www.cmu.edu?

It is 128.2.11.43

Computer 1 **Local DNS Server**

Translates human readable names to logical endpoints

Routing

Routers send packet towards destination

| H: Hosts | R: Routers |

Meeting Application Demands

- Reliability
 - Corruption
 - Lost packets
- Flow and congestion control
- Fragmentation
- In-order delivery
- Etc…

What if the Data gets Corrupted?

Problem: Data Corruption

| GET index.html | Internet | GET windex.html |

Solution: Add a checksum

| 0,9 9 | 6,7,8,21 | 4,5,7 1,2,3,6 |
What if Network is Overloaded?

Problem: Network Overload
- Short bursts: buffer
- What if buffer overflows?
 - Packets dropped
 - Sender adjusts rate until load = resources → "congestion control"

Solution: Buffering and Congestion Control

What if the Data gets Lost?

Problem: Lost Data
- Internet

Solution: Timeout and Retransmit

What if the Data Doesn’t Fit?

Problem: Packet size
- On Ethernet, max IP packet is 1.5kbytes
- Typical web page is 10kbytes

Solution: Fragment data across packets

What if the Data is Out of Order?

Problem: Out of Order
- Internet

Solution: Add Sequence Numbers
Lots of Functions Needed

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc.…

What is Layering?

- Modular approach to network functionality
- Example:

![Layering Example Diagram]

Protocols

- Module in layered structure
- Set of rules governing communication between network elements (applications, hosts, routers)
- Protocols define:
 - Interface to higher layers (API)
 - Interface to peer
 - Format and order of messages
 - Actions taken on receipt of a message

Layering Characteristics

- Each layer relies on services from layer below and exports services to layer above
- Interface defines interaction
- Hides implementation - layers can change without disturbing other layers (black box)
Layering: technique to simplify complex systems

E.g.: OSI Model: 7 Protocol Layers

- Physical: how to transmit bits
- Data link: how to transmit frames
- Network: how to route packets
- Transport: how to send packets end2end
- Session: how to tie flows together
- Presentation: byte ordering, security
- Application: everything else

Layer Encapsulation

OSI Layers and Locations
Protocol Demultiplexing

- Multiple choices at each layer

![Diagram of network protocols]

Is Layering Harmful?

- Sometimes...
 - Layer N may duplicate lower level functionality (e.g., error recovery)
 - Layers may need same info (timestamp, MTU)
 - Strict adherence to layering may hurt performance

Next Lecture: Design Considerations

- How to determine split of functionality
 - Across protocol layers
 - Across network nodes
- Assigned Reading
 - [SRC84] End-to-end Arguments in System Design
 - [Cla88] Design Philosophy of the DARPA Internet Protocols