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ABSTRACT

The Border Gateway Protocol (BGP) has two distinct modes
of operation. External BGP (EBGP) exchanges reachabil-
ity information between autonomous systems, while Internal
BGP (IBGP) exchanges external reachability information
within an autonomous system. We study several routing
anomalies that are unique to IBGP because, unlike EBGP,
forwarding paths and signaling paths are not always sym-
metric. In particular, we focus on anomalies that can cause
the protocol to diverge, and those that can cause a router’s
chosen forwarding path to an egress point to be deflected by
another router on that path. Deflections can greatly com-
plicate the debugging of routing problems, and in the worst
case multiple deflections can combine to form persistent for-
warding loops. We define a correct IBGP configuration to
be one that is anomaly free for every possible set of routes
sent by neighboring autonomous systems. We show that de-
termination of IBGP configuration correctness is NP-hard.
However, we give simple sufficient conditions on network
configurations that guarantee correctness.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing Protocols

General Terms
Algorithms, Theory

Keywords

Border Gateway Protocol, BGP, Internal BGP, BGP Con-
figuration

1. INTRODUCTION

The Border Gateway Protocol (BGP) [19, 15] has two
distinct modes of operation. External BGP (EBGP) ex-
changes reachability information between autonomous sys-
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tems, while Internal BGP (IBGP) exchanges external reach-
ability information within an autonomous system. IBGP
was not designed to maintain reachability within an au-
tonomous systems. This task is normally performed by an
Interior Gateway Protocol (IGP) such as OSPF, IS-IS and
RIP [16]. IBGP’s primary task is to allow internal sources
to reach external destinations and external sources to reach
internal destinations. BGP routing of external routes and
interior routing interact — IBGP’s route selection process
can prefer one route over another because it has a lower IGP
“distance” associated with its egress point. This paper in-
vestigates two types of anomalous behavior that can arise
from this interaction.

EBPG and IBGP differ in both their treatment of certain
attributes and in the manner in which BGP messages are
forwarded. For our study, the forwarding model of IBGP
will be central. EBGP normally assumes that a BGP ses-
sion is established between two routers that share a physical
network. That is, EBGP messages are normally not routed.
IBGP on the other hand is routed within an autonomous
system using the connectivity provided by the IGP. With
pure EBGP, signaling messages and forwarding traffic flow
along the same paths, but in opposite directions. We use
the term path symmetry to describe this scenario. Since
IBGP is routed, there is no guarantee that the forwarding
and signaling paths are symmetric.

In this paper we focus on IBGP routing anomalies that
arise from path asymmetry. It is known that route oscilla-
tions can occur in IBGP due to the use of the Multi-Exit
Discriminator (MED) path attribute [18]. However, it has
been observed that MED-induced oscillation has a different
root cause [14]. In particular, the MED attribute is treated
in a distinct manner by the BGP route selection algorithm.
The specification of BGP in RFC 1771 [19] states that the
route selection process should conform to what we call the
rule of independent ranking, which states that the prefer-
ence of any route should not be a function of the existence
or nonexistence of other routes in the BGP table. The se-
lection algorithm’s treatment of the MED attribute violates
this rule, and can lead to oscillation problems [18, 4]. In this
paper we ignore the MED attribute.

The first IBGP anomaly we consider is one that has been
carefully studied for EBGP — the fact that the protocol
can fail to converge [22, 13, 11, 8, 10, 7]. That is, in an oth-
erwise stable network, BGP speaking routers can exchange
routing messages forever without establishing a stable set of
routes. We show that, even in the absence of MED, IBGP
can diverge as a result of path asymmetry.



The second type of IBGP anomaly we study involves in-
consistent forwarding paths within an autonomous system.
When a BGP speaking router selects a best route to an ex-
ternal destination, that route has a BGP next-hop value that
identifies a particular point of egress from the autonomous
system. The forwarding path from the router to its selected
point of egress is supplied by IGP routing. However, it may
happen that along this forwarding path another BGP speak-
ing router has chosen a different point of egress for the same
external destination. In this case we will say that the for-
warding path has been deflected. Again, this problem arises
due to path asymmetry. Deflections can greatly complicate
the debugging of routing problems, and in the worst case
multiple deflections can combine to form a persistent for-
warding loop.

We consider an autonomous system’s network configu-
ration to be comprised of the network topology, the IGP
metrics, the IBGP sessions, and the BGP routing policies.
Given a network configuration, what could it mean to say
that it is free of the anomalies described above? Network op-
erators have complete control over their network configura-
tions, but they have little control over the routing messages
sent by external neighbors. For this reason, it is helpful to
view a network configuration as a program that takes as
input external routing messages and produces as output a
stable routing for the autonomous system. Configuration
correctness is then taken to be correctness of this program
— we require that, for every possible set of inputs, the pro-
gram terminates with a stable routing that is free of deflec-
tions. We call such a configuration correct. Note that this is
essentially a way of defining configuration sanity within an
isolated autonomous system without requiring any assump-
tions concerning global routing sanity.

In addition to providing this framework for discussing the
correctness of IBGP configurations, we prove several com-
plexity results concerning configuration correctness. In par-
ticular, we show that determining if a configuration will con-
verge for all possible inputs is an NP-hard problem. We also
show that deciding if, for all inputs, a configuration deter-
mines a deflection-free routing is NP-hard as well. For both
types of routing anomalies, we define sufficient conditions
that guarantee configuration correctness.

We will concentrate on IBGP configurations that use route
reflectors [2]. BGP confederations [21] represent another
technique used to scale the internal configuration of BGP.
Although confederations can introduce path asymmetries
that lead to the routing anomalies outlined here, we will
not cover them explicitly since many of the arguments are
similar.

We believe that our observations have significance beyond
technical details narrowly concerned with BGP configura-
tion. Protocol designers using “vectoring” techniques should
be aware of the potential anomalies that can arise when the
relationships between forwarding and signaling paths are un-
constrained.

1.1 Related Work

A comparison of the scaling abilities of route reflection and
BGP confederations, as well as the simple looping example
we use in Figure 4, are presented in [5, 6].

Determination of EBGP convergence was shown to be NP-
complete in [13]. The current paper looks at IBGP cor-
rectness, and focuses on the interaction of IBGP and in-

terior routing. Although many of our examples may not
arise directly in practice, they do show that implementing
algorithms for automatically checking IBGP configuration
correctness will be more complex than expected. In addi-
tion, BGP misconfigurations are not uncommon [17], and
they may interact with network failures in surprising and
unexpected ways.

We take the BGP protocol as given, and attempt to de-
velop correct configurations to avoid routing anomalies. An-
other approach is to redesign the protocol so that anomalies
cannot occur. For example, [1] proposes a modification to
the manner in which IBGP routes are propagated. Although
this work was aimed at solving the “MED oscillation prob-
lem,” it does address the signaling anomalies we focus on. In
addition, their solution guarantees that a routing will have
no loops, although there may still be deflections. However,
their solution comes at the cost of increased memory uti-
lization for all BGP speakers within an autonomous system,
which may be incompatible with one of the main motiva-
tions for using route reflection.

1.2 Outline

Section 2 reviews the BGP route selection process, and
Section 3 presents a formal definition of an IBGP configu-
ration. Section 4 presents examples of both signaling and
forwarding anomalies in IBGP. NP-hardness results for sig-
naling correctness are presented in Section 5, and those for
forwarding correctness are presented in Section 6. Section 7
concludes with some remarks concerning the implications of
this work for protocol design.

2. BGP ROUTE SELECTION

We study a single autonomous system that may or may
not be using route reflection [2]. An autonomous system
consists of a network of routers connected by some under-
lying physical network where each physical link has been
assigned a distance. Routers will interchange routing infor-
mation via IBGP [15]. At any given time, any number of
the border routers may be announcing EBGP routes into the
autonomous system. The description of the physical connec-
tivity, IBGP connectivity, and border router will be called a
configuration of an autonomous system. All of our analysis
will be in terms of one particular external destination, called
the origin.

The external routes that are being announced into the
autonomous system will be called the egress paths and the
border routers that are announcing these paths will be called
the egress nodes. In the presence of route reflection, a cluster
refers to a set of route reflectors R and a set of clients C
where each router in R acts as a route reflector for each
client in C.

Each route update message has a number of attributes
associated with it and the route chosen by a router is based
on these attributes. The standard route selection procedure
of BGP (see, for example [15]) selects first those routes with
highest local _pref values, then from these the ones with
shortest as_path length and then of these, the ones with
lowest med values (for those routes with the same next hop).
At any instant of time, there will be some set of egress paths
to the origin and we consider the subset of these paths that
have not been filtered out by virtue of having low value of
local_pref, long as_path length or a med value that is
higher than some other egress path to the same neighboring



autonomous system. Thus, according to the route selection
preference rules for IBGP, the choice for each router in the
autonomous system of which of the remaining egress paths
to take is based on

(7) first selecting any egress paths learned via EBGP over
those learned by IBGP

(7¢) and then from these, select those whose egress nodes
are nearest according to the distance values assigned
to the links in the physical network

(747) and finally, from the remaining egress paths, use some
tie breaking rules based on the oid attribute (the id
number of the egress node), the length of the cluster
list cluster_list (a list of the clusters the message has
passed through) and the pid (the id of the router from
which the announcement of the route was received).

Note that IBGP does not require that every router within
an autonomous systems choose the same egress point for a
given destination.

3. IBGP CONFIGURATION

We define an IBGP configuration C to be a pair C =
(Gp,Gs), where Gp is the physical graph and Gs is the
signaling graph.

3.1 Physical Graph

First we define a weighted graph Gp = (V, B, Ep, d) called
the physical graph to represent the underlying physical topol-
ogy of the system. Each node u € V represents a router. We
will often refer to a router v meaning the router represented
by the node u. The set B C V is the set of border routers
that have physical connectivity to external networks. There
is an edge e = {u, v} € Ep if there is a physical link between
the routers represented by u and v. The distance d(e) of
an edge is the distance assigned to a physical link that is
typically used by such protocols as OSPF for determining
shortest paths between nodes.

In general, we indicate a path P as a sequence of nodes

P =wuiusz...un.

We concatenate paths P = uiu2 ... u, and Q = viva ... v
to form a new path PQ = wius ... upv1v2...0n if u, # 01
or PQ = wiuz...upv2...0y if up = vi. We define the
length of a path P to be the sum of the distances d(e) over
all edges e of P. Let P be a path between nodes v and v such
that there is no path between nodes u and v whose length
is less than that of P. Then the length of P is written as
M(u,v) (=M(v,u)). Such a path P is said to be a shortest
path between v and v. For every pair of nodes u and v we
define sp(u,v) in Gp to be a shortest path between v and v
and we assume that such paths are consistent in the sense
that if sp(vi,v:) = viva ... v then sp(vs,vj) = vivigr ... vj,
1<i<j<tand sp(ve,v1) = Vevs—1 ... V1.

3.2 Signaling Graph

We define the signaling digraph Gs = (V,As) as fol-
lows. An arc in Gs represents an IBGP session between two
routers. Since BGP sessions are implemented with routed
TCP sessions, an arc in Gs corresponds to some routed path
in G P.

The set of arcs Ag is partitioned into three sets over,
down, and up. An arc (u,v) € over represents the fact
that there is a vanilla IBGP session allowing route update
messages to flow from u to v. This is routed traffic (using
interior routing) whose physical realization will not concern
us. Typically we would expect to have an arc (v, u) € over
whenever the arc (u,v) € over. An arc (u,v) € down
represents the signaling of route update messages from a
route reflector u to one of its clients v. In such a case,
u would send route update messages to v for any routes
except those announced by v. Finally, an arc (u,v) € up
represents the signaling of route update messages from a
client u to a router v acting as a route reflector for u. In
this case, u sends route update messages only about the
routes it announced into the system. Typically we would
expect that (u,v) € down if and only if (v,u) € up.

A valid signaling path S satisfies the following properties.
The path S can be partitioned into three subpaths S = PQR
where P = p1p2...p, for some a > 0 where each p; € up,
R = rira...7p for some b > 0 where each r; € down and
@ is either empty or consists of a single arc q € over. Note
that any of P, @ and R may be empty.

3.3 Configuration Instance

Network operators have control over their network con-
figurations. However, they do not have control over what
routes are sent to them by their neighbors. Routes to a
given destination could potentially arrive at any subset of
the border routers, X C B. We can think of the configu-
ration as a system that takes as input a set X and returns
as output a routing. As we will see, such a system may be
nondeterministic and is not even guaranteed to terminate
with a routing. We are interested in investigating correct-
ness conditions that guarantee that a configuration will al-
ways behave deterministically and terminate with a routing.
Even when these guarantees are met, it is possible that the
resulting routing has undesirable forwarding behavior such
as forwarding loops. Therefore, we will define additional cor-
rectness conditions to prevent such forwarding anomalies.

An egress instance is a pair I = (C,X) where C is a
configuration and X C B. We define an egress instance to
be signaling correct if it is guaranteed to deterministically
arrive at a unique routing. A configuration C is signaling
correct when every egress instance (C,X) is signaling cor-
rect. For signaling correct configurations C, we say that an
egress instance is forwarding correct if the resulting routing
contains no deflections (we define this more formally in Sec-
tion 4.2). Then we say that a configuration C is forwarding
correct if every egress instance (C, X) is forwarding correct.
A configuration is correct if it is both signaling correct and
forwarding correct.

4. CONFIGURATION CORRECTNESS

This section presents several examples of both signaling
and forwarding anomalies in IBGP.

4.1 Examples of signaling anomalies

Previous papers have discussed situations in which EBGP
systems fail to settle on a routing [12, 22]. We now show
that such situations can occur with IBGP within a single
autonomous system even in the absence of problems due to
the med attribute.

In Figure 1, we see an egress instance that has no solution.



Figure 1: No solution.

Typically we use the following conventions in the figures in
this paper. A client within a cluster is shown as a circle, a
route reflector as a diamond and the elements of the clus-
ter are enclosed in a dashed oval. The solid lines in the
figures are the physical connections and are usually labeled
with their IGP weights. Dashed lines between two routers
indicate that they exchange IBGP messages. The clusters
are enclosed in a box representing the autonomous system
boundary. External routes (to the origin) are shown as ar-
rows entering the autonomous system at border routers.

In Figure 1, each R; acts as a route reflector with respect
to C; and each C; has an immediate egress path P; that it
has learned via EBGP, i = 0, 1,2. The weights on the edges
make it so that the ranking of the egress paths for each R; is
such that R; prefers P;41 over P; which is preferred over P41
where the subscripts are to be interpreted modulo 3. It can
easily be verified that in this situation, the routers will never
converge on a set of routes. Thus it would make no sense
to ask whether such a system gives rise to fixed forwarding
loops since it can never settle into a fixed routing.

\\?;x \\?;x \\?;x

Figure 2: No solution, no clutter.

Graphical conventions: To avoid excessive clutter in
figures, the IBGP sessions (dashed lines) will not be shown,
but are implied by the clustering structure. That is, we as-
sume that each client has BGP sessions between itself and
each route reflector in the cluster and that all route reflec-
tors at a given level of the hierarchy are completely meshed.
Using these conventions, the configuration of Figure 1 will
be presented as shown in Figure 2.

The configuration of Figures 1 and 2 has no solution and

results in BGP divergence. In contrast, a BGP system may
have multiple solutions resulting in nondeterministic routing
— the protocol will choose one solution based on the random
order of message processing. Figure 3 presents an IBGP
configuration that has two solutions.

The router R; acts as a route reflector with respect to
C; where C; has an egress path P; learned via an EBGP
session, ¢+ = 1,2. There are two possible solutions. The
timing of the route update messages sent between R; and
Ry determine which of the two solutions would be installed.
In either situation each C; will choose its immediate egress
path P;. If R, informs Ry that it has chosen P, first, then
Ry will also choose egress path P;. Similarly, if Ry tells R;
that it has chosen P> first, then R; will then choose P, as
its favorite egress path.

Figure 3: Two solutions.

4.2 Examples of forwarding anomalies

Recall that for each node v € X and each node u € V,
sp(u,v) denotes some fixed shortest path from u to v in Gp.
At some fixed time, let m(u) denote the route selected by
IBGP at node u to the origin. Define fr(u), the forwarding
path at u according to m, to be sp(u,v) where w(u) has egress
node v. We think of fr(u) as being directed from u to v.
Thus fr(u) is the path along which u would send packets
within the autonomous system towards the origin.

Suppose fr(u1) = uiusz...us. Then we use the notation
fr(u1)[wi, u;] to mean the subpath of fr(u1) starting at u;
and ending at u;, ¢ < j. We say that there is a deflection
on fr(u1) at w; if fr(ui) # fr(u1)[us, ut] but for all j < 3,
fr(u;) = fr(ui)[uj,ut]. That is, u; is the first node from u1
along fr(u1) whose forwarding path is not consistent with
that of node u1. An egress instance is forwarding correct if
it results in routes at each node that create no deflections.

Consider the path that starts at some node u, follows
f=(u) until a deflection, say at w, follows f(w) until it meets
a deflection at say z, follows f.(z) and so on. If such a path
contains a cycle, then we say that the path assignment 7
contains a forwarding loop.

Suppose there is a deflection along f,(u) at some node w.
If fr(w) = w then we say that this is a simple deflection.
Note that in this case, w must be in X. The idea is that
packets from u will not continue on to the egress node of u,
but instead will be deflected out of the autonomous system
at w. Thus simple deflections cannot cause a routing loop
within the autonomous system. Of course, there can be
more complicated deflections. It may be that fr(u;) is just



a different path to u; from wu; than is implied by fr(u1) or
f~(u;) may end at a different node of X. These types of
deflections could cause a forwarding loop.

% a

Figure 4: Example of a forwarding loop.

An example of a forward loop, taken from [5], is shown in
Figure 4. The system has two clusters each with a router R;
acting as a route reflector for client router C;. Thus route
updates are sent between R; and C;, ¢ = 1,2. The only
other IBGP session occurs between R; and R». Each R;
is also a border router announcing the egress path P; into
the network. Clearly R; will always choose P; and announce
it to C;. Hence C; will only know about P; and so it will
choose P; as well. But note that the shortest path from C
to P; is C1C2R1 and the shortest path from C» to P» is
C2C1R2 and so there will be a forwarding loop between C;

and Ca.
¢ Py i Py ¢ Py

Figure 5: Forwarding loop caused by 3 forwarding
paths.

There can be more complicated forwarding loops consist-
ing of any number of edges and involving any number of
forwarding paths. Figure 5 shows an example where three
forwarding paths together form a forwarding loop and gen-
eralizing this example to any number of forwarding paths
can be easily done. In the example, each client C; prefers
R; as its egress node (since that is the only one its route re-
flector R; will ever announce to it). All physicals links have
cost 1 and so the shortest path from C; to R; is C;C;—1R;
(where subscripts are to be evaluated modulo 3). But then
we get the forwarding loop CoC2C1Ch.

It should be noted that while the union of all the forward-
ing paths might contain a directed cycle, this does not nec-
essarily imply that a forwarding loop exists. For example,

Figure 6: Union of forwarding paths contains a cycle
but there is no forwarding loop.

consider Figure 6. It can be easily verified that in the solu-
tion to this system the forwarding path for Ci is C1C3C2 R
and that of Cp is CoC2C3Ro. Thus the union of these two
forwarding paths has the directed cycle C2CsC>. However
in the solution the forwarding path for Cs is C2R; and that
of C3 is C3Ry. Thus there is no forwarding loop because the
forwarding paths of Cy and C: get deflected by C> and Cs
respectively.

Figure 7: Timing dependent forwarding loop.

We now show that signaling and forwarding anomalies
both can be present in the same configuration. Consider
the egress instance shown in Figure 7. Notice that the sub-
system consisting of Rs, R3, C3 and Cjy is the same as the
egress instance shown in Figure 3 and so has two possible
solutions. Also, the subsystem consisting of Ri, Rz, C1 and
C> is essentially the egress instance shown in Figure 4 will be
shown to have a forwarding loop. Note that whichever egress
path R; chooses, router C; will have to choose the same one
since it only hears of egress paths via R;, ¢ = 1,2. Notice
that R; will always choose P and since C; will also choose
P, the forwarding path for C; will always be C1C>R;. Also,
Ry and R3 will never choose P because Q and R respec-
tively are always available to them and closer than P. The
forwarding paths for R> and R3 then are always the single
links to either C3 or C4. Thus the only forwarding path that
can cause forwarding loops is the forwarding path from Co.
Consider one solution where Ry and R3 both choose egress
path @. Then the forwarding path from C, is just C2Cjs
and no forwarding loops result. However, suppose both R»
and R3 choose egress path R. Then the forwarding path for
C2 to R is C2C1R2C4 with length 9 (as opposed to the path
C>C3R>Cy with length 11) and this causes a forwarding loop
between Ci and C>. This shows that nondeterministic rout-
ing makes it impossible to statically determine if this egress
instance will have deflections.



S. RESULTS ON SIGNALING CORRECT-
NESS

In this section we study signaling correctness. In Section
5.1 we show how to translate a configuration into the SPP
model [12]. In Section 5.2, we use the SPP model to for-
mally define the notions of a deterministic egress instance
and a convergent egress instance . In Section 5.3 we show
that determining if a configuration is signaling correct is an
NP-hard problem. Finally, in Section 5.4 we provide suffi-
cient conditions that guarantee that a configuration will be
signaling correct.

5.1 Translation to SPP

An instance S of SPP consists of a graph G = (V, E)
with a distinguished node 0, a set of permitted paths P*
for each node u # 0 in the graph and a ranking function A*
defined on the set of permitted paths at each node u # 0.
Then P = (P"1,P¥2,...,P") and A = (A", A\"2,..., ")
where V' = {0,v1,v2,...,v,}. Thus S is defined by the
triple (G,P,A). For any path P = uiuz...un, let P" =
UnUp—1 ...-U2U1L.

For anode w € V and a set W C P*, define max(u, W) =
¢ if W = 0 and otherwise max(u, W) = P0 € W where
A¥(P0) is maximal. A path assignment 7 for an instance
S = (G,P,A) of SPP is a function such that w(u) € P* for
each node u € V. The set choices(u, ) is defined to be all
P0O € P* where either P = u € X or P0 = {uv}n(v) for
some {u,v} € E. A solution to S is then a path assignment
« such that the following holds for each vertex u € V. Then
a path assignment 7 is said to be stable at node w if

m(u) = max(u, choices(u, 7)).

A path assignment is said to be stable if it is stable at every
node in V.

A stable path assignment for S is called a solution for S.
The SPP instance S is said to be solvable if there is some
solution for S. If no stable assignment for S exists, then S is
unsolvable. It should be noted that a solvable SPP instance
may have more than one stable solution.

Given a egress instance I = (C, X) we now show how to
construct an instance, St = (Gr, Pr, A1), of the SPP.

Let Gp = (V, Ep,d) be a physical graph, Gs = (V, As)
be a signaling graph and X C V be a set of egress nodes.
Then for egress instance I = (C, X) define the SPP instance
Sr = (G1,Pr,Ar) as follows. Let Gr = (V U {0}, E) where
there is an edge {0,u} € F if and only if u € X and there
are edges {u,v} € E, u,v # 0, if and only if there are arcs
(u,v) and (v,u) in As. At node u, the set of permitted
paths consists of the empty path ¢ and all paths PO where
PT is a valid signaling path in Gs from some egress node to
u. The set of permitted paths at a node u is ranked so that
A¥(Pv0) < A*(Qw0) if M (u,v) > M (u,w). The empty path
is always the lowest ranked path. There are any number
of ways of breaking ties. We assume the following. Each
node z; € X is assigned some distinct value oid(z;). The
value oid(z;) is meant to represent the oid of z;. Also each
node u assigns some distinct number id*(v) to each node v
where (v,u) € Ags. This represents the pid of v. For path
PQ, define |cluster_list(P0)| to be the number of different
clusters represented by the nodes along P. If M(u,v) =
M (u,w) then we define \*(uyPv0) < A*(uzQw0) if

(7) oid(w) < oid(v) or

(4¢) if oid(w) = oid(v) and |cluster_list(uzQw0)| <
|cluster_list (uyPv0)| or

(732) if oid(w) = oid(v), |cluster_list (uzQw0)| =
|cluster _list (uyPv0)| and id" (z) < id“(y).

We now consider how difficult it is to compute the SPP
instance Sr for a given instance I = ((Gp,Gs),X) where
Gp = (V,Ep,d), Gs = (V,As) and X C V. Let |V| = n.
The length of any valid signaling path is then bounded by n.
Thus there can be at most O(n") valid signaling paths. But
in typical networks, the route reflector hierarchy is generally
no more than about three. Thus the length of any valid
signaling path can be considered bounded by some constant
¢ and hence there are O(n°) possible valid signaling paths.

Computing the set of all possible valid signaling paths is
straightforward. Define S; to be the set of all length ¢ valid
signaling paths. Then Sy is just the set of all nodes in X.
Then iteratively compute S;1+1 as follows. If s € S; then
consider the set A of all the arcs in G directed out of the
last node in s. For a € A, if sa is a valid signaling path
then add sa to Siy1. Thus if the maximum length of a valid
signaling path is a constant, then the set of all valid signaling
paths can be computed in time polynomial in n.

Determining the ranking of the valid signaling paths at
the various nodes is easily accomplished after computing
shortest paths in the physical graph Gp.

Thus assuming that valid signaling digraphs have length
bounded by some constant, the SPP instance S; can be
computed in polynomial time.

5.2 Deterministic and signaling correct egress
instances

By earlier examples, it was shown that it really only makes
sense to ask if an egress instance is forwarding correct if in
fact, the egress instance deterministically settles on a unique
routing. Thus we now define more precisely what it means
for an egress instance to deterministically result in a unique
routing by defining what it means for the corresponding SPP
instance to have a unique solution.

Let a configuration instance I = (C,X) correspond to the
SPP S(C,X). By correctness of I, we want to formalize
something along the lines of “for every X C B, the SPP
S(C, X) is correct”. But what could we mean by “S(C, X)
is correct”? This should at least mean that S(C, X) has a
unique solution. However, even when an SPP has a unique
solution, there is no guarantee that a BGP-like distributed
protocol will converge to it. But how how can we discuss
divergence without introducing the protocol itself? We will
impose a digraph structure on the set of all path assign-
ments, as in [11], where an arc from 7 to 7’ indicates that
some set of nodes have changed their best paths as a result
of the assingments to their neighbors. Such a digraph will
contain regions of vertices such that there is a directed path
between any two vertices in the region, and the set is mini-
mal with respect to this property. We will call these regions
minimal steady set. When such a set contains a single ver-
tex, then that vertex must represent a solution. So we will
interpret “S(C, X) is correct” to mean that there is a unique
minimal steady set (Theorem 5.2) and that this set contains
a unique vertex (Theorem 5.3).

Let S = (G = (V, E),P,A) be some instance of SPP. We
say that a set of path assignments II = {m,m2,..., 7} is
steady if for each 7 and for all subsets U C V there is some j



such that for all u € U, max(u, choices(u, 7;)) = m;(u), and
for v e V —U, m;(u) = m;(u). Such an assignment is said to
be minimal if for all TI' C TI, IT' is not steady.

If II = {m,m2,...,m} is a minimal steady set of path
assignments and m;(u) = w1 (u) for 1 < ¢ < ¢, then u is said
to be fized in II. We write f(II) to indicate the set of all
nodes where u is fixed in II. If all w € V are fixed in II then
|TII| = 1 and II is a stable solution.

An instance of SPP is called a predictable instance if it
has exactly one minimal steady set of path assignments. If
the SPP instance corresponding to an egress instance I is
predictable, then we say that I is predictable. If an instance
of SPP is predictable and in its one minimal steady set of
path assignments all nodes are fixed then we say that it is a
signaling correct instance. If the SPP instance correspond-
ing to an egress instance [ is signaling correct, then we say
that I is signaling correct.

5.3 Complexity of determining signaling cor-
rectness

We are now prepared to consider the complexity of deter-
mining if a configuration is signaling correct. Unfortunately,
we show that this problem is NP-hard.

For technical reasons, we now define a structure that is
similar to a configuration but we allow some of the border
routers to be considered to always be announcing routes
into the system. We define a generalized configuration to
be the triple G = (Gp,Gs,F) where Gp = (V,B,Ep,d)
is a physical graph, Gs = (V, As) is a signaling digraph
and F' C B is a set of nodes that are always egress nodes.
For any subset W C B, let G(IW) be the egress instance
((Gp,Gs),WUF).

The NP-hardness proofs presented will rely on reductions
from 3-sAT, a known NP-complete problem [9].

We begin by considering a generalized configuration that
will be a fundamental structure in the various constructions
used in the reductions. We use a mixed graph (i.e., a graph
with both directed and undirected edges) to more easily il-
lustrate the signaling connectivity of a network. The graph
Gr = (V,ERg) is called the relationship graph. An undi-
rected edge {u, v} € Er means that in the corresponding sig-
naling graph there are arcs (u,v) € over and (v,u) € over.
An arc (u,v) € Er represents the fact that u operates as a
route reflector to its client v. Thus the corresponding sig-
naling digraph would have an arc (u,v) € down and an arc
(v,u) € up.

¢ .
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Figure 8: Relationship graph.

Let I = K1 AKaA...NK, be an instance of 3-SAT where
K; = a} Vab Vab where each aé is one of x or Ty for some
k, 1 <k < m. We define a generalized configuration Br
based on this instance that will be a basis for the various
constructions to follow.

Figure 9: Physical graph.

For 3-sAT instance I, we build a relationship graph and
a physical graph as shown in Figure 8 and Figure 9 where
by way of example, we suppose that K1 = x; VT; V zx and
K, =%, VTV x;.
Formally, we define
V. = {n}
U {K;:1<i<n}
U {aj:1<i<n,1<;5<3}
U {T;:1<i<m}U{F:1<i<m}.
Then the arcs of Er are
Egr {(Kl,N)lgzgn}
U {(Ki,a§):1<i<n,1<;<3}
{(a;:,Tk) s if aj- is zy, or Ty}

u {(aj-,Fk) Lif a} is zx or Ty}

C

The physical graph Gp is as indicated in the example
shown in Figure 9. For each K; there is an edge {K;, N}
with distance 5. Consider some clause K; = (a} V a} V a}).
Suppose a} is z for some k. Then there is an edge {a}, Tk}
with distance 3, an edge {a}, Fx} with distance 2 and an
edge {aj— , Tr, } of distance 1. If aj- is Ty, for some k then there
is an edge {a}, Fx} with distance 3, an edge {a}, Tk} with
distance 2 and an edge {a}, Fx} of distance 1.

Let U = {F;,T; : 1 < i < m}and Y = N. Then
Br = ((Gp,Gs), F). If I is satisfiable then let a be a truth
assignment that satisfies I. Then define W, to consist of all
the T; such that z; is true in « and all the F} such that z;
is false in a.

LEMMA 5.1. The SPP instance determined by B(W) is
signaling correct for all W and has the following properties:

(2) If I is satisfiable, then the SPP instance defined by
B(Wa) has the property that in its stable solution no
node K; will have N as its egress node.

(i) If I is not satisfiable, then in the SPP instance de-
fined by B(W) for any W, there will be some node K;
with N as its egress node in the stable solution.

For i = 1,2,..., let G%(I) and G%(I) be copies of the
relationship graph Gr and implied signaling graph Gs de-
scribed above. Also, for ¢ = 1,2,..., let G (I) be a copy
of the physical graph Gp described above. If I is satisfied
by assignment o then we let U consist of the Tji’s and F}’s
such that T; and F} are in U,. In the ith copy we re-label
nodes so that node u becomes node u'. In the case where
only one copy of each such graph is used, the superscript ¢



will be omitted. We show how various copies of these graphs
can be combined to provide lower bounds on a number of
problems involving signaling stability and routing stability.

Let G = (Gp,Gs,F) where Gp = (V,Ep,d) be a gen-
eralized configuration consisting of a physical graph Gp =
(V,Ep,d), a signaling digraph Gs = (V, As) and a set of
nodes F' that are always egress nodes. Suppose that for
all possible subsets W C B, the egress instance G(W) =
(Gp,Gs,X = FUW) defines an SPP instance that has ex-
actly one minimal steady set of path assignments. Then we
say that such a generalized configuration is predictable.

The problem UNIQUE STEADY is defined as follows. An
instance of UNIQUE STEADY consists of a generalized config-
uration G = (Gp, Gs, F) and the question is whether G is a
predictable generalized configuration.

THEOREM 5.2. UNIQUE STEADY s NP-hard.

Proof: From an instance I of 3-SAT we define an instance
D = (Gp,Gs,F) of UNIQUE STEADY. The instance D is
computable in time polynomial in the size of I.

Figure 11: Physical graph for Theorem 5.2.

The physical graph Gp and signaling graph Ggs are as
indicated in Figure 10 and Figure 11 respectively.

Then we define F and B as F = {N', N?} and

B {Z:,Z,,N',N?}
{1}, T?:1<i<m}

{F},F?:1<i<m}.

CcC C

If T is satisfiable then take W = Wa U W2 U {Z1, Z»}.
Then by Lemma 5.1 we know that no K will have N* as an
egress node in a solution where K} is stable. Then M; will
not have N’ as a choice. But then its easy to see that the
resulting egress instance will be equivalent to that shown in
Figure 3, thus having two stable solutions and hence two
minimal steady sets of path assignments.

If there is no satisfying assignment for I then by Lemma
5.1, N; will be the egress node of some K} for any W and
so M* will also have to have N* as its egress node and this
represents the only minimal steady set of path assignments.
|

Thus it will not be simple to check if a generalized con-
figuration is predictable, that is, if any of the possible sets
of egress nodes will result in an SPP instance that has a
unique minimal steady set of path assignments. So we now
assume that we are given a predictable generalized config-
uration. Let G = (Gp,Gs, F) where Gp = (V,Ep,d) be a
predictable generalized configuration consisting of a physical
graph Gp = (V, Ep,d), a signaling digraph Gs = (V, Ag),
a set of nodes F' that are always egress nodes. Suppose
that for all possible subsets W C B, the egress instance
GW) = (Gp,Gs, X = F UW) defines an SPP instance
whose one minimal steady set of path assignments is sig-
naling correct. Then we say that such a generalized con-
figuration is signaling correct. We then ask the question if
its possible to easily determine if a predictable generalized
configuration is signaling correct.

The problem SIGNALING CORRECT is defined as follows.
An instance of SIGNALING CORRECT consists of a predictable
generalized configuration G. For such an instance of SIGNAL-
ING CORRECT the question asked is whether G is signaling
correct.

THEOREM 5.3. SIGNALING CORRECT is NP-hard.

Proof: From an instance I of 3-SAT we define an instance
D = (Gp,Gs, F) of SIGNALING CORRECT.

The physical graph Gp and signaling graph Gs are as
indicated in Figure 5.3 (a) and (b) respectively.

Then we define F and B as F = {N', N? N3} and

B = {Zi,Z»,Z3,N',N°,N°}
U {THTA T :1<i<m}
U {F,F,F?:1<i<m}.

The arguments are analogous to those in the proof of The-
orem 5.2 in showing that there is a W (containing Z1, Z» and
Z3) such that each M; will not have N' as an egress node
when M; is stable if there is a satisfying assignment for I.
But then the resulting egress instance will be equivalent to
that shown in Figure 1, thus have no stable solutions. So
if there is no satisfying assignment for I then if M; is sta-
ble then it will have N° as its egress node for any W in
which case its one set of minimal steady path assignments
will consist of exactly one path assignment and it will be
stable. W



(b) Physical graph for Theorem 5.3.

5.4 A sufficient condition for signaling cor-
rectness

We have shown that it will be difficult to determine if
a predictable generalized configuration is signaling correct.
However, we can show a sufficient condition for guarantee-
ing that a generalized configuration is signaling correct. The
condition follows from the customer-provider, peer-to-peer
model defined in [8]. This condition has been shown to guar-
antee signaling correctness by showing that a dispute wheel
(a structure derived from the formal SPP model, that repre-
sents a circular sequence of router configuration incompat-
ibilities) cannot exist [7]. The result follows from the fact
that the absence of dispute wheels implies signaling correct-
ness [12]. The customer-provider, peer-peer model says that
for each AS u, and each AS v that u has a BGP session with,
v is in exactly one of three sets customer(u), provider(u) or
peer(u) depending on the established relationship between
u and v. These sets should be such that if v € customer(u)
then u € provider(v) and if v € peer(u) then u € peer(v).
Then export rules are determined by these relationships as
follows:

() u exports only its routes and those of its customers to
v € provider,

(71) u exports all routes to v € customer and

(747) u exports its routes and those of its customers to v €
peer.

Define the directed graph D with a node for each AS and
an arc (u,v) if and only if v € customer(u). Then it was
shown that if D is a directed acyclic graph (DAG) and each
AS prefers customer routes over peer and provider routes
then the system would be guaranteed to converge to a stable
route assignment.

But it is easily seen that saying that having an arc (u,v) €
up is equivalent to having v € provider(u), having an arc
(u,v) € down is equivalent to having v € customer(u)
and having an arc (u,v) € over is equivalent to having
v € peer(u). Thus if the directed graph consisting of all
arcs (u,v) € down is a DAG and if all nodes u rank exit
routes they hear from clients over exit routes they hear from
non-clients then the resulting SPP instance will be signaling
correct.

Thus this gives a sufficient condition for guaranteeing that
an SPP instance is signaling correct. However, notice that if
this sufficient condition holds for the case where all possible
exit routes are present, then it certainly holds for whichever
subset of possible exit routes are present. Thus it provides a
sufficient condition for guaranteeing that a generalized con-
figuration is signaling correct.



6. RESULTS ONFORWARDING CORRECT-
NESS

We now consider the problem of determining if a con-
figuration that is known to be signaling correct is in fact,
forwarding correct. In Section 6.1 we show that determin-
ing if a configuration is forwarding correct is NP-hard. For
this reason, we would like to define sufficient conditions that
guarantee that a configuration is forwarding correct. Before
doing so in Section 6.3, we first discuss in Section 6.2 some of
the difficulties with defining reasonable sufficient conditions.

6.1 Complexity of forwarding correctness

Suppose we are given a signaling correct generalized con-
figuration (perhaps one guaranteed signaling correct by the
conditions discussed in Section 5.4). Then we would like to
know if for every possible set of egress paths, does the re-
sulting SPP instance have the property that its one minimal
steady set of path assignments results in no deflections. We
say that such a signaling correct generalized configuration
is correct. Unfortunately, this problem also turns out to be
hard.

We define the problem DEFLECTION as follows. An in-
stance of DEFLECTION consists of a signaling correct gener-
alized configuration G. For such an instance of DEFLECTION
the question asked is whether G is correct.

THEOREM 6.1. DEFLECTION s NP-hard.

Proof: From an instance I of 3-SAT, we define an instance
D = (Gp,Gs,Y,U) of DEFLECTION.

Let I = K1y AKaxA...ANK, be an instance of 3-SAT where
K; = a} Vab Val where each a§ is one of x3 or Ty for some
k,1<k<m.

Figure 12: Relationship graph for Theorem 6.1.

We build a signaling graph Gs = (V, As) as indicated by
the relationship graph shown in Figure 12. This consists of
Gr(I) along with the additional vertices and arcs shown.
A physical graph Gp = (V, Ep,d) is also constructed as
shown in Figure 13. Again this consists of Gp(I) plus some
additional vertices and weighted edges as shown in Figure
13.

Then we define Y and U as Y = {N} and

U={H,J}U{;:1<i<m}U{F;:1<i<m}.

We first show that if there is a satisfying assignment for I
then there is some W C U such that taking X = {N}UW as
the set of egress nodes results in a SPP instance whose one
stable solution has a deflection. Also, it is shown that if I is
unsatisfiable then for every W C U, the one stable solution
of the resulting correct SPP instance has no deflections.

Suppose there is a satisfying assignment «. Let U, C W.
Also J € W and H € W. By the proof of Lemma 5.1, when

Figure 13: Physical graph for Theorem 6.1.

L is stable it will never have N as its egress node since no
K; does. Thus L will have H as its egress node. Of course,
J will always have itself as its egress node when it is stable.
The deflection occurs if L has H as its egress node since
then M must then also have H as its egress node. But then
M'’s shortest path to H goes through J and so there will be
a deflection there.

Now suppose there is no satisfying assignment for I. We
know from the proof of Lemma 5.1 that for any choice of
egress nodes from amongst the T;’s and F;’s, some K; will
have IV as its egress path when Kj; is stable. If any K; has
N as an egress node then L must also have N as its egress
node when L is stable. But then M must also have N as
its egress node. But M'’s shortest path to N is direct and
so no deflection at J occurs. It does not matter if either or
both of H and J are in X because either they will have their
own egress path if it is an egress node or they will have N
as their egress node but it easy to check that their shortest
paths go through L or M and both of these have NV as egress
node as well. &

6.2 Towards conditions for forwarding cor-
rectness

Given a signaling correct configuration, we would like to
be able to determine if it is in fact, a forwarding correct
configuration and hence a correct configuration. Since this
is NP-hard, perhaps we can at least provide sufficient con-
ditions that guarantee correctness. Before doing so, we first
look at a few seemingly simple signaling correct egress in-
stances that give rise to a simple deflection or a forwarding
loop.

The system in Figure 14 shows an egress instance with
one router R; acting as a route reflector for two clients Ci
and C3. The only signaling edges are between R; and Cj,
i = 1,2. The result is that R; always choose P (an EBGP
route), and so Ci only learns of P and hence chooses it
as well. But C3 chooses Q and C3 is on the forwarding
path from C; to P. This example says that simple deflec-
tions, those that do not not cause forwarding loops but have
a “short cut” via an unexpected egress path along a for-
warding route, can occur in very innocent looking egress
instances. Notice that in this example only typical IBGP
sessions between clients and their route reflector are allowed
and the physical graph is a complete mesh. It is not clear
what is “wrong” with this egress instance, and this suggests
that simple deflections, while not desirable since they can
complicate debugging, may be very difficult to eliminate.
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Figure 14: Simple deflection in a trivial system.
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Figure 15: Trivial system that has a forwarding loop.

Figure 15 is a fairly simple example that shows that for-
warding loops can occur in egress instances that allow more
IBGP sessions than would typically be defined. The IBGP
sessions are the typical ones between the one route reflector
R; and each of the clients C;. There is one additional IBGP
session between C> and C3. The physical links are as shown
in the figure. This results in C; choosing P because it never
hears about @) since R; chooses P. But because of that ex-
tra IBGP session between C»> and Cs, C2 does hear about
@ and chooses it thus setting up a forwarding loop between
C: and Cs.

In fact, the presence of simple deflections can actually be
the source of forwarding loops between autonomous systems,
as opposed to the forwarding loops contained within a sin-
gle autonomous system. Such an example is illustrated in
Figure 16. In this network, there are two autonomous sys-
tems labeled 1 and 2 trying to set up routes to the origin.
Only the physical links and the costs of the internal links
are shown. Both AS 1 and 2 have turned off testing the
length of the as_path (or they are member ASes in a con-
federation). Router R: acts as a route reflector to clients
A; and A and these IBGP sessions between R; and its
clients are the only IBGP sessions within AS 1. Similarly,
R» is a route reflector for clients By and B> and there is no
IBGP session between By and Bs. Imagine R, learns of the
route P> and announces it to its clients. Then B; selects

AS1

Figure 16: External forwarding loops caused by in-
ternal deflections.

that route and announces it to A via EBGP. Then A, will
select route corresponding to (router level signaling) path
As Bi1 Ry P>. Meanwhile, R: learns of the route P; and
announces it to its clients. This results in A; selecting P;
since its the only route it hears about, while A, selects the
route with path A By Ry P» since it was learned via EBGP.
However, Ai’s shortest path to Ri goes through A, and this
results in a deflection. Now A; announces via EBGP the
route corresponding to the path A1 Ri P: to B> and so B»
will choose route that route. This causes the packets sent
by Bi to R2 to get deflected at B> since it lies along the
shortest path from B; to R;. Thus there is a forwarding
loop Bz, A1 As Bi1 By A;---, indicated in the figure by
directed links.

Figure 17: Favoring a route other than a client
route.

When the forwarding path is not a valid signaling path,
it is possible to get deflections. In Figure 17, router Rp is a




route reflector for client router Ry where R in turn acts as
a route reflector, along with a second route reflector R, in a
“lower level” cluster containing client Ci. The path C1R2R:
is the shortest path between C; and R; and it also a valid
signaling path from Ci to Ri. But Ry favors Ry as egress
node over C by virtue of the shorter path thus not satisfying
the constraint that client routes should be favored over other
routes. Since RoR2R; is not a valid signaling path, R; will
favor egress node C1 by default. But this causes a deflection
at RQ.

6.3 Sufficient conditions for forwarding cor-
rectness

Given that it is NP-hard to determine if deflections can
occur, we now wish to give sufficient conditions that guaran-
tee that a stable solution will not give rise to any deflections
(or forwarding loops). That is, if we have a signaling correct
generalized configuration satisfying these conditions, then in
fact, we have a correct generalized configuration.

The conditions we require are:

(¢) if (v,u) € up and (w,u) € up then it must be that
A¥(uwP"0) < A*(uwQ"0) for any valid signaling paths
wwP and wv@ and

(#2) for any nodes u and v, sp(u,v) = P for some valid
signaling path P.

The first condition is motivated by the example in Fig-
ure 17. The second condition is motivated by the examples
of Figures 14 and 15.

In what follows, we will sometimes abuse notation and
write A*(v) < A*(w) for nodes v # w to mean that the
length of the shortest path from u to v is greater than the
length of the shortest path from w to w or if the shortest
paths are equal then oid(v) > oid(w). Thus u would rank
any permitted path having egress node w over any permitted
path having egress node v.

Consider the stable solution 7 to some given generalized
configuration. Let £(u) denote the egress node chosen by
node u corresponding to 7(u).

LEMMA 6.2. Let P be a shortest path from u to v and let
w be some node on P. If \¥(v) < A¥(E(w)) then X*(v) <
A (E(w))-

Proof: Either the length of a shortest path from w to £(w)
is shorter than the length of a shortest path from w to v, in
which case the length of a shortest path from u to £(w) is
also shorter than from that from u to v, or else the lengths
are equal and oid(€£(w)) < oid(v). Thus, in either case,
A¥(v) < A¥(E(w)). |

LEMMA 6.3. Suppose condition (i) holds. Let v = E(u) =
E(v) and suppose sp(v,u) is a signaling path from v to u. If
w € sp(v,u) then either E(w) = v or AY(E(w)) > A% (v).

Proof: The proof is by induction on the number of edges in
sp(v,w). The lemma is trivially true if sp(v,w) has 0 edges
(that is, if w = v).

Let sp(v,u) = vov1 ... vy where u = v and v = vo. Sup-
pose the claim is true for any v; where 0 < i < j.

Now consider v;. If £(v;) = v then we are done. Oth-
erwise suppose (u;j—1,u;) € up. Then by condition (7), it
must be that there is a valid signaling path S from &(u;) to

u; consisting solely of arcs in up. But then the path Sv; is
also a valid signaling path and so

A (E(ug)) > A% (E(uj-1)). (1)
By induction,
N1 (E(uj-1)) > X471 (v) (2)
and so by Lemma 6.2, Equation (2) implies
A9 (E(uj-1)) > X" (v). ®3)

Thus Inequality (1) and Inequality (3) together imply that
A% (E(uj)) > A% (v) as required.

Suppose (uj—1,u;) € down or (uj—1,u;) € over. Let
Q@ be any valid signaling path from £(uj—1) to uj—1. Then
(uj—1,u;) € down and so Qu; is a valid signaling path from
E(uj—1) to u;. Then the same arguments as in the previous
case hold. m

THEOREM 6.4. If a generalized configuration G satisfies
conditions (i) and (i) above, then no solution of G will have
any deflections.

Proof: Let u be some node such that there is a deflection
along P = sp(v,u) where v = £(u) according to some so-
lution w. By condition (74), P must be a signaling path.
Let uo = v, ur = u and P = wou1...ur. Let u; be the
node closest to u on P at which £(u;) # v. By Lemma 6.3,
A% (E(u;)) > A% (v) and so by Lemma 6.2,

NUHL(E () > X9H (0) = X (E(ui)). (4

A similar argument to that in the proof of Lemma 6.3 shows
that there is a valid signaling path @ from E(u;—1) to u;—1
then Qu; is also a valid signaling path and so

A% (v) = A% (E(ui)) > X (E(uiz1))
contradicting Inequality (4). B

7. REMARKS

BGP has evolved to become a rather complicated proto-
col, implementing many optional features designed for scal-
ability and increased policy expressiveness. These features
can interact in complex and surprising ways. The need to
optimize the implementation of the IBGP full mesh led to
the development of BGP route reflection and confederations.
On the one hand, these extensions have allowed IBGP con-
figurations to encompass very large transit networks. On the
other hand, this has come at the price of increased config-
uration complexity and the potential for realizing the kinds
of routing anomalies considered in this paper.

We have focused on configuration correctness to avoid
these anomalies. One could as well redesign the protocol
so that they can never occur [1]. Another approach to
IBGP redesign might be to make route reflectors smarter
— they could calculate best paths for their clients based on
the client’s notion of distance to an egress point.

BGP represents a widely deployed instance of a wvector-
ing protocol that allows local and independent policy con-
trol. Other protocols in the same family as BGP are now
emerging, such as protocols for optical inter-networking [3]
and Telephony Routing over IP (TRIP) [20]. We believe
that the design space of this family of protocols is not well
understood. Our work should help protocol designers bet-
ter understand one aspect of this design space — potential



anomalies can arise when the relationships between forward-
ing and signaling paths are unconstrained.

The anomalies studied here can arise after links or nodes
fail in the network. Thus, IBGP configuration is not robust
with resect to failures. Note however that the deflection
problem vanishes if traffic is tunneled to egress points rather
than being routed. For example, if MPLS is used to forward
traffic within an autonomous system, then there will be no
deflection problems.
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