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15-744: Computer Networking

L-5 TCP & Routers
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TCP & Routers

• TCP Vegas/alternative congestion control schemes
• RED
• Fair queuing
• Core-stateless fair queuing/XCP
• Assigned reading

• [BP95] TCP Vegas: End to End Congestion Avoidance on a Global 
Internet

• [FJ93] Random Early Detection Gateways for Congestion 
Avoidance

• [DKS90] Analysis and Simulation of a Fair Queueing Algorithm, 
Internetworking: Research and Experience

• [SSZ98] Core-Stateless Fair Queueing: Achieving Approximately 
Fair Allocations in High Speed Networks

• [KHR02] Congestion Control for High Bandwidth-Delay Product 
Networks
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Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP

L -5; 10-15-04© Srinivasan Seshan, 2004 4

TCP Vegas Slow Start

• ssthresh estimation via packet pair
• Only increase every other RTT 

• Tests new window size before increasing
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Packet Pair

• What would happen if a source transmitted 
a pair of packets back-to-back?

• Spacing of these packets would be 
determined by bottleneck link
• Basis for ack clocking in TCP

• What type of bottleneck router behavior 
would affect this spacing
• Queuing scheduling
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Packet Pair

• FIFO scheduling
• Unlikely that another flows packet will get 

inserted in-between
• Packets sent  back-to-back are likely to be 

queued/forwarded back-to-back
• Spacing will reflect link bandwidth

• Fair queuing
• Router alternates between different flows
• Bottleneck router will separate packet pair at 

exactly fair share rate
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Packet Pair in Practice

• Most Internet routers are FIFO/Drop-Tail
• Easy to measure link bandwidths

• Bprobe, pathchar, pchar, nettimer, etc.
• How can this be used?

• NewReno and Vegas use it to initialize ssthresh
• Prevents large overshoot of available 

bandwidth
• Want a high estimate – otherwise will take a 

long time in linear growth to reach desired 
bandwidth
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TCP Vegas Congestion Avoidance

• Only reduce cwnd if packet sent after last 
such action
• Reaction per congestion episode not per loss

• Congestion avoidance vs. control
• Use change in observed end-to-end delay to 

detect onset of congestion
• Compare expected to actual throughput
• Expected = window size / round trip time
• Actual = acks / round trip time
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TCP Vegas
• If actual < expected < actual + α

• Queues decreasing increase rate
• If actual + α < expected < actual + β

• Don’t do anything

• If expected > actual + β
• Queues increasing decrease rate before packet drop

• Thresholds of α and β correspond to how many 
packets Vegas is willing to have in queues
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TCP Vegas
• Fine grain timers

• Check RTO every time a dupack is received or for 
“partial ack”

• If RTO expired, then re-xmit packet
• Standard Reno only checks at 500ms

• Allows packets to be retransmitted earlier
• Not the real source of performance gain

• Allows retransmission of packet that would have 
timed-out
• Small windows/loss of most of window
• Real source of performance gain
• Shouldn’t comparison be against NewReno/SACK
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TCP Vegas

• Flaws
• Sensitivity to delay variation
• Paper did not do great job of explaining where 

performance gains came from
• Some ideas have been incorporated into 

more recent implementations
• Overall

• Some very intriguing ideas
• Controversies killed it
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Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers 
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP
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Changing Workloads
• New applications are changing the way TCP is used
• 1980’s Internet

• Telnet & FTP long lived flows
• Well behaved end hosts
• Homogenous end host capabilities
• Simple symmetric routing

• 2000’s Internet
• Web & more Web large number of short xfers
• Wild west – everyone is playing games to get bandwidth
• Cell phones and toasters on the Internet
• Policy routing

• How to accommodate new applications?
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TCP Friendly Rate Control (TFRC)

• Equation 1 – real TCP response
• 1st term corresponds to simple derivation
• 2nd term corresponds to more complicated 

timeout behavior
• Is critical in situations with > 5% loss rates where 

timeouts occur frequently

• Key parameters
• RTO
• RTT
• Loss rate
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RTO/RTT Estimation
• Not used to actually determine retransmissions

• Used to model TCP’s extremely slow transmission rate 
in this mode

• Only important when loss rate is high
• Accuracy is not as critical

• Different TCP’s have different RTO calculation
• Clock granularity critical 500ms typical, 100ms, 

200ms, 1s also common
• RTO = 4 * RTT is close enough for reasonable 

operation
• EWMA RTT

• RTTn+1 = (1-α)RTTn + αRTTSAMP
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Loss Estimation
• Loss event rate vs. loss rate
• Characteristics

• Should work well in steady loss rate
• Should weight recent samples more
• Should increase only with a new loss
• Should decrease only with long period without loss

• Possible choices
• Dynamic window – loss rate over last X packets
• EWMA of interval between losses
• Weighted average of last n intervals

• Last n/2 have equal weight
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Loss Estimation

• Dynamic windows has many flaws
• Difficult to chose weight for EWMA
• Solution WMA

• Choose simple linear decrease in weight for 
last n/2 samples in weighted average

• What about the last interval?
• Include it when it actually increases WMA value
• What if there is a long period of no losses?
• Special case (history discounting) when current 

interval > 2 * avg
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Slow Start

• Used in TCP to get rough estimate of 
network and establish ack clock
• Don’t need it for ack clock
• TCP ensures that overshoot is not > 2x
• Rate based protocols have no such limitation –

why?
• TFRC slow start

• New rate set to min(2 * sent, 2 * recvd)
• Ends with first loss report rate set to ½

current rate
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Congestion Avoidance
• Loss interval increases in order to increase rate

• Primarily due to the transmission of new packets in 
current interval

• History discounting increases interval by removing old 
intervals

• .14 packets per RTT without history discounting
• .22 packets per RTT with discounting

• Much slower increase than TCP
• Decrease is also slower

• 4 – 8 RTTs to halve speed
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Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers 
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP



6

L -5; 10-15-04© Srinivasan Seshan, 2004 21

TCP Performance

• Can TCP saturate a link?
• Congestion control

• Increase utilization until… link becomes 
congested

• React by decreasing window by 50%
• Window is proportional to rate * RTT

• Doesn’t this mean that the network 
oscillates between 50 and 100% utilization?
• Average utilization = 75%??
• No…this is *not* right!
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TCP Congestion Control

Only W packets 
may be outstanding

Rule for adjusting W
• If an ACK is received: W ← W+1/W
• If a packet is lost: W ← W/2

Source Dest

maxW

2
maxW

t

Window size
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Single TCP Flow
Router without buffers
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Summary Unbuffered Link

t

W Minimum window 
for full utilization

• The router can’t fully utilize the link
• If the window is too small, link is not full
• If the link is full, next window increase causes drop
• With no buffer it still achieves 75% utilization
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TCP Performance

• In the real world, router queues play 
important role
• Window is proportional to rate * RTT

• But, RTT changes as well the window
• Window to fill links = propagation RTT * 

bottleneck bandwidth
• If window is larger, packets sit in queue on 

bottleneck link
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TCP Performance
• If we have a large router queue can get 100% 

utilization
• But, router queues can cause large delays

• How big does the queue need to be?
• Windows vary from W W/2

• Must make sure that link is always full
• W/2 > RTT * BW
• W = RTT * BW + Qsize
• Therefore, Qsize > RTT * BW

• Ensures 100% utilization
• Delay?

• Varies between RTT and 2 * RTT
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Single TCP Flow
Router with large enough buffers for full link utilization
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Summary Buffered Link

t

W

Minimum window 
for full utilization

• With sufficient buffering we achieve full link utilization
• The window is always above the critical threshold
• Buffer absorbs changes in window size

• Buffer Size = Height of TCP Sawtooth
• Minimum buffer size needed is 2T*C

• This is the origin of the rule-of-thumb

Buffer
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Example
• 10Gb/s linecard

• Requires 300Mbytes of buffering.
• Read and write 40 byte packet every 32ns.

• Memory technologies
• DRAM: require 4 devices, but too slow. 
• SRAM: require 80 devices, 1kW, $2000.

• Problem gets harder at 40Gb/s
• Hence RLDRAM, FCRAM, etc.

• Rule-of-thumb makes sense for one flow
• Typical backbone link has > 20,000 flows
• Does the rule-of-thumb still hold?
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If flows are synchronized

• Aggregate window has same dynamics
• Therefore buffer occupancy has same dynamics
• Rule-of-thumb still holds.

2
maxW

t

max

2
W∑

maxW∑

maxW
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If flows are not synchronized

Probability
Distribution

B

0

Buffer Size

∑W
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Central Limit Theorem

• CLT tells us that the more variables (Congestion 
Windows of Flows) we have, the narrower the Gaussian 
(Fluctuation of sum of windows)

• Width of Gaussian decreases with 
• Buffer size should also decreases with

n
CT

n
BB n ×

=→ = 21

n
1

n
1
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Required buffer size

2T C
n
×

Simulation
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Queuing Disciplines

• Each router must implement some queuing 
discipline

• Queuing allocates both bandwidth and 
buffer space:
• Bandwidth: which packet to serve (transmit) 

next 
• Buffer space: which packet to drop next (when 

required)
• Queuing also affects latency
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Packet Drop Dimensions

Aggregation
Per-connection state Single class

Drop position
Head Tail

Random location

Class-based queuing

Early drop Overflow drop
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Typical Internet Queuing
• FIFO + drop-tail

• Simplest choice
• Used widely in the Internet

• FIFO (first-in-first-out) 
• Implies single class of traffic

• Drop-tail
• Arriving packets get dropped when queue is full 

regardless of flow or importance
• Important distinction:

• FIFO: scheduling discipline
• Drop-tail: drop policy
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FIFO + Drop-tail Problems

• Leaves responsibility of congestion control 
to edges (e.g., TCP)

• Does not separate between different flows
• No policing: send more packets get more 

service
• Synchronization: end hosts react to same 

events
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Active Queue Management

• Design active router queue management to 
aid congestion control 

• Why?
• Routers can distinguish between propagation 

and persistent queuing delays
• Routers can decide on transient congestion, 

based on workload
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Active Queue Designs

• Modify both router and hosts
• DECbit – congestion bit in packet header

• Modify router, hosts use TCP
• Fair queuing

• Per-connection buffer allocation
• RED (Random Early Detection)

• Drop packet or set bit in packet header as soon as 
congestion is starting
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Internet Problems

• Full queues
• Routers are forced to have have large queues 

to maintain high utilizations
• TCP detects congestion from loss

• Forces network to have long standing queues in 
steady-state

• Lock-out problem
• Drop-tail routers treat bursty traffic poorly
• Traffic gets synchronized easily allows a few 

flows to monopolize the queue space
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Design Objectives

• Keep throughput high and delay low
• Accommodate bursts
• Queue size should reflect ability to accept 

bursts rather than steady-state queuing
• Improve TCP performance with minimal 

hardware changes
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Lock-out Problem

• Random drop
• Packet arriving when queue is full causes some 

random packet to be dropped
• Drop front

• On full queue, drop packet at head of queue
• Random drop and drop front solve the lock-

out problem but not the full-queues problem
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Full Queues Problem

• Drop packets before queue becomes full 
(early drop)

• Intuition: notify senders of incipient 
congestion
• Example: early random drop (ERD):

• If qlen > drop level, drop each new packet with fixed 
probability p

• Does not control misbehaving users
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Random Early Detection (RED)

• Detect incipient congestion, allow bursts
• Keep power (throughput/delay) high

• Keep average queue size low
• Assume hosts respond to lost packets

• Avoid window synchronization
• Randomly mark packets

• Avoid bias against bursty traffic
• Some protection against ill-behaved users
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RED Algorithm

• Maintain running average of queue length
• If avgq < minth do nothing

• Low queuing, send packets through
• If avgq > maxth, drop packet

• Protection from misbehaving sources
• Else mark packet in a manner proportional 

to queue length
• Notify sources of incipient congestion
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RED Operation

Min threshMax thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)
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RED Algorithm

• Maintain running average of queue length
• Byte mode vs. packet mode – why?

• For each packet arrival
• Calculate average queue size (avg)
• If minth ≤ avgq < maxth

• Calculate probability Pa

• With probability Pa
• Mark the arriving packet

• Else if maxth ≤ avg
• Mark the arriving packet
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Queue Estimation
• Standard EWMA: avgq - (1-wq) avgq + wqqlen

• Special fix for idle periods – why?
• Upper bound on wq depends on minth

• Want to ignore transient congestion
• Can calculate the queue average if a burst arrives

• Set wq such that certain burst size does not exceed minth

• Lower bound on wq to detect congestion relatively 
quickly

• Typical wq = 0.002
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Thresholds

• minth determined by the utilization 
requirement
• Tradeoff between queuing delay and utilization

• Relationship between maxth and minth
• Want to ensure that feedback has enough time 

to make difference in load
• Depends on average queue increase in one 

RTT 
• Paper suggest ratio of 2

• Current rule of thumb is factor of 3
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Packet Marking

• Marking probability based on queue length
• Pb = maxp(avgq - minth) / (maxth - minth)

• Just marking based on Pb can lead to 
clustered marking 
• Could result in synchronization
• Better to bias Pb by history of unmarked 

packets
• Pa = Pb/(1 - count*Pb)
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Packet Marking

• maxp is reflective of typical loss rates
• Paper uses 0.02

• 0.1 is more realistic value
• If network needs marking of 20-30% then 

need to buy a better link!
• Gentle variant of RED (recommended)

• Vary drop rate from maxp to 1 as the avgq
varies from maxth to 2* maxth

• More robust to setting of maxth and maxp
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Extending RED for Flow Isolation

• Problem: what to do with non-cooperative 
flows?

• Fair queuing achieves isolation using per-
flow state – expensive at backbone routers
• How can we isolate unresponsive flows without 

per-flow state?
• RED penalty box

• Monitor history for packet drops, identify flows 
that use disproportionate bandwidth

• Isolate and punish those flows
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FRED

• Fair Random Early Drop (Sigcomm, 1997)
• Maintain per flow state only for active flows 

(ones having packets in the buffer)
• minq and maxq min and max number of 

buffers a flow is allowed occupy
• avgcq = average buffers per flow
• Strike count of number of times flow has 

exceeded maxq
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FRED – Fragile Flows

• Flows that send little data and want to avoid 
loss

• minq is meant to protect these
• What should minq be?

• When large number of flows 2-4 packets
• Needed for TCP behavior

• When small number of flows increase to 
avgcq
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FRED

• Non-adaptive flows
• Flows with high strike count are not allowed 

more than avgcq buffers
• Allows adaptive flows to occasionally burst to 

maxq but repeated attempts incur penalty
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CHOKe

• CHOse and Keep/Kill (Infocom 2000)
• Existing schemes to penalize unresponsive 

flows (FRED/penalty box) introduce additional 
complexity

• Simple, stateless scheme
• During congested periods

• Compare new packet with random pkt in queue
• If from same flow, drop both
• If not, use RED to decide fate of new packet
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CHOKe

• Can improve behavior by selecting more 
than one comparison packet
• Needed when more than one misbehaving flow

• Does not completely solve problem
• Aggressive flows are punished but not limited 

to fair share
• Not good for low degree of multiplexing 

why?



16

L -5; 10-15-04© Srinivasan Seshan, 2004 61

Stochastic Fair Blue
• Same objective as RED Penalty Box

• Identify and penalize misbehaving flows
• Create L hashes with N bins each

• Each bin keeps track of separate marking rate (pm)
• Rate is updated using standard technique and a bin 

size
• Flow uses minimum pm of all L bins it belongs to
• Non-misbehaving flows hopefully belong to at least one 

bin without a bad flow
• Large numbers of bad flows may cause false positives
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Stochastic Fair Blue

• False positives can continuously penalize 
same flow

• Solution: moving hash function over time
• Bad flow no longer shares bin with same flows
• Is history reset does bad flow get to make 

trouble until detected again?
• No, can perform hash warmup in background
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Fairness Goals

• Allocate resources fairly 
• Isolate ill-behaved users

• Router does not send explicit feedback to 
source

• Still needs e2e congestion control
• Still achieve statistical muxing

• One flow can fill entire pipe if no contenders
• Work conserving scheduler never idles link if 

it has a packet
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What is Fairness?
• At what granularity?

• Flows, connections, domains?
• What if users have different RTTs/links/etc.

• Should it share a link fairly or be TCP fair?
• Maximize fairness index?

• Fairness = (Σxi)2/n(Σxi
2)   0<fairness<1

• Basically a tough question to answer – typically 
design mechanisms instead of policy
• User = arbitrary granularity
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Max-min Fairness

• Allocate user with “small” demand what it 
wants, evenly divide unused resources to 
“big” users

• Formally:
• Resources allocated in terms of increasing demand
• No source gets resource share larger than its 

demand
• Sources with unsatisfied demands get equal share 

of resource
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Max-min Fairness Example

• Assume sources 1..n, with resource 
demands X1..Xn in ascending order

• Assume channel capacity C.
• Give C/n to X1; if this is more than X1 wants, 

divide excess (C/n - X1) to other sources: each 
gets C/n + (C/n - X1)/(n-1)

• If this is larger than what X2 wants, repeat 
process
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Implementing Max-min Fairness

• Generalized processor sharing
• Fluid fairness
• Bitwise round robin among all queues

• Why not simple round robin?
• Variable packet length can get more service 

by sending bigger packets
• Unfair instantaneous service rate

• What if arrive just before/after packet departs?
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Bit-by-bit RR

• Single flow: clock ticks when a bit is 
transmitted. For packet i:
• Pi = length, Ai = arrival time, Si = begin transmit 

time, Fi = finish transmit time
• Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit from all 
active flows is transmitted round number
• Can calculate Fi for each packet if number of 

flows is know at all times
• Why do we need to know flow count? need to 

know A This can be complicated
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Bit-by-bit RR Illustration

• Not feasible to 
interleave bits on 
real networks
• FQ simulates bit-by-

bit RR

L -5; 10-15-04© Srinivasan Seshan, 2004 71

Fair Queuing

• Mapping bit-by-bit schedule onto packet 
transmission schedule

• Transmit packet with the lowest Fi at any 
given time
• How do you compute Fi?
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FQ Illustration

Flow 1

Flow 2

Flow n

I/P O/P

Variation: Weighted Fair Queuing (WFQ)
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Bit-by-bit RR Example

F=10

Flow 1
(arriving)

Flow 2
transmitting Output

F=2

F=5
F=8

Flow 1 Flow 2 Output

F=10

Cannot preempt packet
currently being transmitted
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Delay Allocation
• Reduce delay for flows using less than fair share

• Advance finish times for sources whose queues drain 
temporarily

• Schedule based on Bi instead of Fi
• Fi = Pi + max (Fi-1, Ai) Bi = Pi + max (Fi-1, Ai - δ)
• If Ai < Fi-1, conversation is active and δ has no effect
• If Ai > Fi-1, conversation is inactive and δ determines 

how much history to take into account
• Infrequent senders do better when history is used
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Fair Queuing Tradeoffs
• FQ can control congestion by monitoring flows

• Non-adaptive flows can still be a problem – why?
• Complex state

• Must keep queue per flow
• Hard in routers with many flows (e.g., backbone routers)
• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation
• Classification into flows may be hard
• Must keep queues sorted by finish times
• dR/dt changes whenever the flow count changes
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Core-Stateless Fair Queuing
• Key problem with FQ is core routers

• Must maintain state for 1000’s of flows
• Must update state at Gbps line speeds

• CSFQ (Core-Stateless FQ) objectives
• Edge routers should do complex tasks since they have 

fewer flows
• Core routers can do simple tasks

• No per-flow state/processing this means that core routers 
can only decide on dropping packets not on order of 
processing

• Can only provide max-min bandwidth fairness not delay 
allocation
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Core-Stateless Fair Queuing

• Edge routers keep state about flows and do 
computation when packet arrives

• DPS (Dynamic Packet State)
• Edge routers label packets with the result of 

state lookup and computation
• Core routers use DPS and local 

measurements to control processing of 
packets
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Edge Router Behavior

• Monitor each flow i to measure its arrival 
rate (ri)
• EWMA of rate
• Non-constant EWMA constant 

• e-T/K where T = current interarrival, K = constant
• Helps adapt to different packet sizes and arrival 

patterns

• Rate is attached to each packet

L -5; 10-15-04© Srinivasan Seshan, 2004 80

Core Router Behavior

• Keep track of fair share rate α
• Increasing α does not increase load (F) by N * 
∆α

• F(α) = Σi min(ri, α) what does this look like?
• Periodically update α
• Keep track of current arrival rate

• Only update α if entire period was congested or 
uncongested

• Drop probability for packet = max(1- α/r, 0)
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F vs. Alpha

New alpha

C [linked capacity]

r1 r2 r3 old alpha
alpha

F
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Estimating Fair Share
• Need F(α) = capacity = C

• Can’t keep map of F(α) values would require per 
flow state

• Since F(α) is concave, piecewise-linear
• F(0) = 0 and F(α) = current accepted rate = Fc

• F(α) = Fc/ α
• F(αnew) = C αnew = αold * C/Fc

• What if a mistake was made?
• Forced into dropping packets due to buffer capacity
• When queue overflows α is decreased slightly
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Other Issues

• Punishing fire-hoses – why?
• Easy to keep track of in a FQ scheme

• What are the real edges in such a scheme?
• Must trust edges to mark traffic accurately
• Could do some statistical sampling to see if 

edge was marking accurately
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Feedback 

Round Trip Time

Congestion Window

Congestion Header

Feedback            

Round Trip Time

Congestion Window

How does XCP Work?

Feedback  =               
+ 0.1 packet
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Feedback =                
+ 0.1 packet  

Round Trip Time

Congestion Window

Feedback  =                
- 0.3 packet

How does XCP Work?
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Congestion Window = Congestion Window + Feedback

Routers compute feedback without 
any per-flow state 

Routers compute feedback without 
any per-flow state 

How does XCP Work?

XCP extends ECN and CSFQ
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How Does an XCP Router Compute the 
Feedback?

Congestion Controller Fairness Controller
Goal: Divides ∆ between 
flows to converge to fairness

Looks at a flow’s state in 
Congestion Header 

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally 
between flows
If ∆ < 0 ⇒ Divide ∆ between 
flows proportionally to their 
current rates

MIMD AIMD

Goal: Matches input traffic to 
link capacity & drains the queue

Looks at aggregate traffic & 
queue

Algorithm:
Aggregate traffic changes by ∆
∆ ~ Spare Bandwidth
∆ ~ - Queue Size
So, ∆ = α davg Spare - β Queue

∆Congestion 
Controller

Fairness 
Controller
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∆ = α davg Spare - β Queue

2
24

0 2αβπα =<< and

Theorem: System converges 
to optimal utilization (i.e., 
stable) for any link bandwidth, 
delay, number of sources if:

(Proof based on Nyquist
Criterion)

Getting the devil out of the details …

Congestion Controller Fairness Controller

No Parameter Tuning No Parameter Tuning 

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally between flows
If ∆ < 0 ⇒ Divide ∆ between flows 
proportionally to their current rates

Need to estimate number of 
flows N

∑ ×
=

Tinpkts pktpkt RTTCwndT
N

)/(
1

RTTpkt : Round Trip Time in header 
Cwndpkt : Congestion Window in header
T: Counting IntervalNo Per-Flow StateNo Per-Flow State
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Lessons

• TCP alternatives
• TCP being used in new/unexpected ways
• Key changes needed

• Routers
• FIFO, drop-tail interacts poorly with TCP
• Various schemes to desynchronize flows and control 

loss rate
• Fair-queuing

• Clean resource allocation to flows
• Complex packet classification and scheduling

• Core-stateless FQ & XCP
• Coarse-grain fairness
• Carrying packet state can reduce complexity 
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Next Lecture
• 10/22

• No lecture
• Project proposals due

• 10/29
• Midterm

• Covers through today’s lecture
• 90minute exam

• Assigned reading
• [CT90] Architectural Considerations for a New Generation of 

Protocols
• [K+99] Web Caching with Consistent Hashing 

EXTRA SLIDES

The rest of the slides are FYI
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Overview

• Changing Workloads
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Short Transfers
• Fast retransmission needs at least a window of 4 packets

• To detect reordering

• Should not be necessary if small outstanding number of 
packets
• Adjust threshold to min(3, cwnd/outstanding)

• Some paths have much more reordering than others
• Adapt threshold to past reordering

• Allow new packets to be transmitted for first few dupacks
• Will create new dupacks and force retransmission
• Will not reduce goodput in situations of reordering
• Follows packet conservation
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Enhanced TCP Loss Recovery

Router

Router

Router

Data Packets Acknowledgments

4

6 5

8 7

3 3

ClientServer

Server

Server

Client

Client
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Enhanced TCP Loss Recovery

Router

Router
2

3 3

Data Packets Acknowledgments

Server

Server

Client

Client
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Short Transfers

• Short transfer performance is limited by 
slow start RTT
• Start with a larger initial window
• What is a safe value?

• TCP already burst 3 packets into network during 
slow start

• Large initial window = min (4*MSS, max (2*MSS, 
4380 bytes)) [rfc2414]

• Enables fast retransmission
• Only used in initial slow start not in any subsequent 

slow start
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Well Behaved vs. Wild West

• How to ensure hosts/applications do proper 
congestion control?

• Who can we trust?
• Only routers that we control
• Can we ask routers to keep track of each flow

• No, we must avoid introducing per flow state into 
routers

• Active router mechanisms for control in later 
lectures
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Overview

• DECbit
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The DECbit Scheme

• Basic ideas:
• On congestion, router sets congestion 

indication (CI) bit on packet
• Receiver relays bit to sender
• Sender adjusts sending rate

• Key design questions:
• When to set CI bit?
• How does sender respond to CI?

L -5; 10-15-04© Srinivasan Seshan, 2004 100

Setting CI Bit

AVG queue length = (previous busy+idle + current interval)/(averaging interval)

Previous cycle Current cycle

Averaging interval

Current time

Time

Queue length
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DECbit Routers

• Router tracks average queue length
• Regeneration cycle: queue goes from empty to non-

empty to empty
• Average from start of previous cycle
• If average > 1 router sets bit for flows sending 

more than their share
• If average > 2 router sets bit in every packet
• Threshold is a trade-off between queuing and delay
• Optimizes power = (throughput / delay)
• Compromise between sensitivity and stability

• Acks carry bit back to source
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DECbit Source

• Source averages across acks in window
• Congestion if > 50% of bits set
• Will detect congestion earlier than TCP

• Additive increase, multiplicative decrease
• Decrease factor = 0.875 

• Lower than TCP (1/2) – why?
• Increase factor = 1 packet
• After change, ignore DECbit for packets in 

flight (vs. TCP ignore other drops in window)
• No slow start
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DECbit Evaluation

• Relatively easy to implement
• No per-connection state
• Stable
• Assumes cooperative sources
• Conservative window increase policy
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Overview

• TCP Vegas
• TFRC and Alternatives
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Other FQ variants
• Core-stateless FQ & XCP
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Stochastic Fair Queuing
• Similar idea as Stochastic Fair Blue

• Compute a hash on each packet
• Instead of per-flow queue have a queue per hash bin
• An aggressive flow steals traffic from other flows in the 

same hash
• Queues serviced in round-robin fashion

• Has problems with packet size unfairness
• Memory allocation across all queues

• When no free buffers, drop packet from longest queue
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Deficit Round Robin

• Each queue is allowed to send Q bytes per 
round

• If Q bytes are not sent (because packet is 
too large) deficit counter of queue keeps 
track of unused portion

• If queue is empty, deficit counter is reset to 
0

• Uses hash bins like Stochastic FQ
• Similar behavior as FQ but computationally 

simpler
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Self-clocked Fair Queuing

• Virtual time to make computation of finish 
time easier

• Problem with basic FQ
• Need be able to know which flows are really 

backlogged
• They may not have packet queued because they 

were serviced earlier in mapping of bit-by-bit to 
packet

• This is necessary to know how bits sent map onto 
rounds

• Mapping of real time to round is piecewise linear 
however slope can change often
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Self-clocked FQ

• Use the finish time of the packet being 
serviced as the virtual time
• The difference in this virtual time and the real 

round number can be unbounded
• Amount of service to backlogged flows is 

bounded by factor of 2
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Start-time Fair Queuing

• Packets are scheduled in order of their start 
not finish times

• Self-clocked virtual time = start time of 
packet in service

• Main advantage can handle variable rate 
service better than other schemes
• Useful for hierarchical schedulers
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Blue

• Uses packet loss and link idle events 
instead of average queue length – why?
• Hard to decide what is transient and what is 

severe with queue length
• Based on observation that RED is often forced 

into drop-tail mode
• Adapt to how bursty and persistent congestion 

is by looking at loss/idle events
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Blue

• Basic algorithm
• Upon packet loss, if no update in freeze_time 

then increase pm by d1
• Upon link idle, if no update in freeze_time then 

decrease pm by d2
• d1 >> d2   why ?

• More critical to react quickly to increase in load
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Comparison: Blue vs. RED
• maxp set to 1

• Normally only 0.1
• Based on type of tests & measurement objectives

• Want to avoid loss marking is not penalized
• Enough connections to ensure utilization is good
• Is this realistic though?

• Blue advantages
• More stable marking rate & queue length
• Avoids dropping packets
• Much better behavior with small buffers
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Stochastic Fair Blue

• Is able to differentiate between approx. NL

flows
• Bins do not actually map to buffers

• Each bin only keeps drop rate
• Can statistically multiplex buffers to bins
• Works well since Blue handles small queues
• Has difficulties when large number of 

misbehaving flows
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Binomial Congestion Control

• In AIMD
• Increase: Wn+1 = Wn + α
• Decrease: Wn+1 = (1- β) Wn

• In Binomial
• Increase: Wn+1 = Wn + α/Wn

k

• Decrease: Wn+1 = Wn - β Wn
l

• k=0 & l=1 AIMD
• l < 1 results in less than multiplicative decrease

• Good for multimedia applications
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Binomial Congestion Control

• Rate ~ 1/ (loss rate)1/(k+l+1)

• If k+l=1 rate ~ 1/p0.5

• TCP friendly if l ≤ 1
• AIMD (k=0, l=1) is the most aggressive of 

this class 
• Good for applications that want to probe quickly 

and can use any available bandwidth


