
1

15-744: Computer Networking

L-5 TCP & Routers

L -5; 10-15-04© Srinivasan Seshan, 2004 2

TCP & Routers

• TCP Vegas/alternative congestion control schemes
• RED
• Fair queuing
• Core-stateless fair queuing/XCP
• Assigned reading

• [BP95] TCP Vegas: End to End Congestion Avoidance on a Global
Internet

• [FJ93] Random Early Detection Gateways for Congestion
Avoidance

• [DKS90] Analysis and Simulation of a Fair Queueing Algorithm,
Internetworking: Research and Experience

• [SSZ98] Core-Stateless Fair Queueing: Achieving Approximately
Fair Allocations in High Speed Networks

• [KHR02] Congestion Control for High Bandwidth-Delay Product
Networks

L -5; 10-15-04© Srinivasan Seshan, 2004 3

Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP

L -5; 10-15-04© Srinivasan Seshan, 2004 4

TCP Vegas Slow Start

• ssthresh estimation via packet pair
• Only increase every other RTT

• Tests new window size before increasing

2

L -5; 10-15-04© Srinivasan Seshan, 2004 5

Packet Pair

• What would happen if a source transmitted
a pair of packets back-to-back?

• Spacing of these packets would be
determined by bottleneck link
• Basis for ack clocking in TCP

• What type of bottleneck router behavior
would affect this spacing
• Queuing scheduling

L -5; 10-15-04© Srinivasan Seshan, 2004 6

Packet Pair

• FIFO scheduling
• Unlikely that another flows packet will get

inserted in-between
• Packets sent back-to-back are likely to be

queued/forwarded back-to-back
• Spacing will reflect link bandwidth

• Fair queuing
• Router alternates between different flows
• Bottleneck router will separate packet pair at

exactly fair share rate

L -5; 10-15-04© Srinivasan Seshan, 2004 7

Packet Pair in Practice

• Most Internet routers are FIFO/Drop-Tail
• Easy to measure link bandwidths

• Bprobe, pathchar, pchar, nettimer, etc.
• How can this be used?

• NewReno and Vegas use it to initialize ssthresh
• Prevents large overshoot of available

bandwidth
• Want a high estimate – otherwise will take a

long time in linear growth to reach desired
bandwidth

L -5; 10-15-04© Srinivasan Seshan, 2004 8

TCP Vegas Congestion Avoidance

• Only reduce cwnd if packet sent after last
such action
• Reaction per congestion episode not per loss

• Congestion avoidance vs. control
• Use change in observed end-to-end delay to

detect onset of congestion
• Compare expected to actual throughput
• Expected = window size / round trip time
• Actual = acks / round trip time

3

L -5; 10-15-04© Srinivasan Seshan, 2004 9

TCP Vegas
• If actual < expected < actual + α

• Queues decreasing increase rate
• If actual + α < expected < actual + β

• Don’t do anything

• If expected > actual + β
• Queues increasing decrease rate before packet drop

• Thresholds of α and β correspond to how many
packets Vegas is willing to have in queues

L -5; 10-15-04© Srinivasan Seshan, 2004 10

TCP Vegas
• Fine grain timers

• Check RTO every time a dupack is received or for
“partial ack”

• If RTO expired, then re-xmit packet
• Standard Reno only checks at 500ms

• Allows packets to be retransmitted earlier
• Not the real source of performance gain

• Allows retransmission of packet that would have
timed-out
• Small windows/loss of most of window
• Real source of performance gain
• Shouldn’t comparison be against NewReno/SACK

L -5; 10-15-04© Srinivasan Seshan, 2004 11

TCP Vegas

• Flaws
• Sensitivity to delay variation
• Paper did not do great job of explaining where

performance gains came from
• Some ideas have been incorporated into

more recent implementations
• Overall

• Some very intriguing ideas
• Controversies killed it

L -5; 10-15-04© Srinivasan Seshan, 2004 12

Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP

4

L -5; 10-15-04© Srinivasan Seshan, 2004 13

Changing Workloads
• New applications are changing the way TCP is used
• 1980’s Internet

• Telnet & FTP long lived flows
• Well behaved end hosts
• Homogenous end host capabilities
• Simple symmetric routing

• 2000’s Internet
• Web & more Web large number of short xfers
• Wild west – everyone is playing games to get bandwidth
• Cell phones and toasters on the Internet
• Policy routing

• How to accommodate new applications?

L -5; 10-15-04© Srinivasan Seshan, 2004 14

TCP Friendly Rate Control (TFRC)

• Equation 1 – real TCP response
• 1st term corresponds to simple derivation
• 2nd term corresponds to more complicated

timeout behavior
• Is critical in situations with > 5% loss rates where

timeouts occur frequently

• Key parameters
• RTO
• RTT
• Loss rate

L -5; 10-15-04© Srinivasan Seshan, 2004 15

RTO/RTT Estimation
• Not used to actually determine retransmissions

• Used to model TCP’s extremely slow transmission rate
in this mode

• Only important when loss rate is high
• Accuracy is not as critical

• Different TCP’s have different RTO calculation
• Clock granularity critical 500ms typical, 100ms,

200ms, 1s also common
• RTO = 4 * RTT is close enough for reasonable

operation
• EWMA RTT

• RTTn+1 = (1-α)RTTn + αRTTSAMP

L -5; 10-15-04© Srinivasan Seshan, 2004 16

Loss Estimation
• Loss event rate vs. loss rate
• Characteristics

• Should work well in steady loss rate
• Should weight recent samples more
• Should increase only with a new loss
• Should decrease only with long period without loss

• Possible choices
• Dynamic window – loss rate over last X packets
• EWMA of interval between losses
• Weighted average of last n intervals

• Last n/2 have equal weight

5

L -5; 10-15-04© Srinivasan Seshan, 2004 17

Loss Estimation

• Dynamic windows has many flaws
• Difficult to chose weight for EWMA
• Solution WMA

• Choose simple linear decrease in weight for
last n/2 samples in weighted average

• What about the last interval?
• Include it when it actually increases WMA value
• What if there is a long period of no losses?
• Special case (history discounting) when current

interval > 2 * avg

L -5; 10-15-04© Srinivasan Seshan, 2004 18

Slow Start

• Used in TCP to get rough estimate of
network and establish ack clock
• Don’t need it for ack clock
• TCP ensures that overshoot is not > 2x
• Rate based protocols have no such limitation –

why?
• TFRC slow start

• New rate set to min(2 * sent, 2 * recvd)
• Ends with first loss report rate set to ½

current rate

L -5; 10-15-04© Srinivasan Seshan, 2004 19

Congestion Avoidance
• Loss interval increases in order to increase rate

• Primarily due to the transmission of new packets in
current interval

• History discounting increases interval by removing old
intervals

• .14 packets per RTT without history discounting
• .22 packets per RTT with discounting

• Much slower increase than TCP
• Decrease is also slower

• 4 – 8 RTTs to halve speed

L -5; 10-15-04© Srinivasan Seshan, 2004 20

Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP

6

L -5; 10-15-04© Srinivasan Seshan, 2004 21

TCP Performance

• Can TCP saturate a link?
• Congestion control

• Increase utilization until… link becomes
congested

• React by decreasing window by 50%
• Window is proportional to rate * RTT

• Doesn’t this mean that the network
oscillates between 50 and 100% utilization?
• Average utilization = 75%??
• No…this is *not* right!

L -5; 10-15-04© Srinivasan Seshan, 2004 22

TCP Congestion Control

Only W packets
may be outstanding

Rule for adjusting W
• If an ACK is received: W ← W+1/W
• If a packet is lost: W ← W/2

Source Dest

maxW

2
maxW

t

Window size

L -5; 10-15-04© Srinivasan Seshan, 2004 23

Single TCP Flow
Router without buffers

L -5; 10-15-04© Srinivasan Seshan, 2004 24

Summary Unbuffered Link

t

W Minimum window
for full utilization

• The router can’t fully utilize the link
• If the window is too small, link is not full
• If the link is full, next window increase causes drop
• With no buffer it still achieves 75% utilization

7

L -5; 10-15-04© Srinivasan Seshan, 2004 25

TCP Performance

• In the real world, router queues play
important role
• Window is proportional to rate * RTT

• But, RTT changes as well the window
• Window to fill links = propagation RTT *

bottleneck bandwidth
• If window is larger, packets sit in queue on

bottleneck link

L -5; 10-15-04© Srinivasan Seshan, 2004 26

TCP Performance
• If we have a large router queue can get 100%

utilization
• But, router queues can cause large delays

• How big does the queue need to be?
• Windows vary from W W/2

• Must make sure that link is always full
• W/2 > RTT * BW
• W = RTT * BW + Qsize
• Therefore, Qsize > RTT * BW

• Ensures 100% utilization
• Delay?

• Varies between RTT and 2 * RTT

L -5; 10-15-04© Srinivasan Seshan, 2004 27

Single TCP Flow
Router with large enough buffers for full link utilization

L -5; 10-15-04© Srinivasan Seshan, 2004 28

Summary Buffered Link

t

W

Minimum window
for full utilization

• With sufficient buffering we achieve full link utilization
• The window is always above the critical threshold
• Buffer absorbs changes in window size

• Buffer Size = Height of TCP Sawtooth
• Minimum buffer size needed is 2T*C

• This is the origin of the rule-of-thumb

Buffer

8

L -5; 10-15-04© Srinivasan Seshan, 2004 29

Example
• 10Gb/s linecard

• Requires 300Mbytes of buffering.
• Read and write 40 byte packet every 32ns.

• Memory technologies
• DRAM: require 4 devices, but too slow.
• SRAM: require 80 devices, 1kW, $2000.

• Problem gets harder at 40Gb/s
• Hence RLDRAM, FCRAM, etc.

• Rule-of-thumb makes sense for one flow
• Typical backbone link has > 20,000 flows
• Does the rule-of-thumb still hold?

L -5; 10-15-04© Srinivasan Seshan, 2004 30

If flows are synchronized

• Aggregate window has same dynamics
• Therefore buffer occupancy has same dynamics
• Rule-of-thumb still holds.

2
maxW

t

max

2
W∑

maxW∑

maxW

L -5; 10-15-04© Srinivasan Seshan, 2004 31

If flows are not synchronized

Probability
Distribution

B

0

Buffer Size

∑W

L -5; 10-15-04© Srinivasan Seshan, 2004 32

Central Limit Theorem

• CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)

• Width of Gaussian decreases with
• Buffer size should also decreases with

n
CT

n
BB n ×

=→ = 21

n
1

n
1

9

L -5; 10-15-04© Srinivasan Seshan, 2004 33

Required buffer size

2T C
n
×

Simulation

L -5; 10-15-04© Srinivasan Seshan, 2004 34

Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP

L -5; 10-15-04© Srinivasan Seshan, 2004 35

Queuing Disciplines

• Each router must implement some queuing
discipline

• Queuing allocates both bandwidth and
buffer space:
• Bandwidth: which packet to serve (transmit)

next
• Buffer space: which packet to drop next (when

required)
• Queuing also affects latency

L -5; 10-15-04© Srinivasan Seshan, 2004 36

Packet Drop Dimensions

Aggregation
Per-connection state Single class

Drop position
Head Tail

Random location

Class-based queuing

Early drop Overflow drop

10

L -5; 10-15-04© Srinivasan Seshan, 2004 37

Typical Internet Queuing
• FIFO + drop-tail

• Simplest choice
• Used widely in the Internet

• FIFO (first-in-first-out)
• Implies single class of traffic

• Drop-tail
• Arriving packets get dropped when queue is full

regardless of flow or importance
• Important distinction:

• FIFO: scheduling discipline
• Drop-tail: drop policy

L -5; 10-15-04© Srinivasan Seshan, 2004 38

FIFO + Drop-tail Problems

• Leaves responsibility of congestion control
to edges (e.g., TCP)

• Does not separate between different flows
• No policing: send more packets get more

service
• Synchronization: end hosts react to same

events

L -5; 10-15-04© Srinivasan Seshan, 2004 39

Active Queue Management

• Design active router queue management to
aid congestion control

• Why?
• Routers can distinguish between propagation

and persistent queuing delays
• Routers can decide on transient congestion,

based on workload

L -5; 10-15-04© Srinivasan Seshan, 2004 40

Active Queue Designs

• Modify both router and hosts
• DECbit – congestion bit in packet header

• Modify router, hosts use TCP
• Fair queuing

• Per-connection buffer allocation
• RED (Random Early Detection)

• Drop packet or set bit in packet header as soon as
congestion is starting

11

L -5; 10-15-04© Srinivasan Seshan, 2004 41

Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP

L -5; 10-15-04© Srinivasan Seshan, 2004 42

Internet Problems

• Full queues
• Routers are forced to have have large queues

to maintain high utilizations
• TCP detects congestion from loss

• Forces network to have long standing queues in
steady-state

• Lock-out problem
• Drop-tail routers treat bursty traffic poorly
• Traffic gets synchronized easily allows a few

flows to monopolize the queue space

L -5; 10-15-04© Srinivasan Seshan, 2004 43

Design Objectives

• Keep throughput high and delay low
• Accommodate bursts
• Queue size should reflect ability to accept

bursts rather than steady-state queuing
• Improve TCP performance with minimal

hardware changes

L -5; 10-15-04© Srinivasan Seshan, 2004 44

Lock-out Problem

• Random drop
• Packet arriving when queue is full causes some

random packet to be dropped
• Drop front

• On full queue, drop packet at head of queue
• Random drop and drop front solve the lock-

out problem but not the full-queues problem

12

L -5; 10-15-04© Srinivasan Seshan, 2004 45

Full Queues Problem

• Drop packets before queue becomes full
(early drop)

• Intuition: notify senders of incipient
congestion
• Example: early random drop (ERD):

• If qlen > drop level, drop each new packet with fixed
probability p

• Does not control misbehaving users

L -5; 10-15-04© Srinivasan Seshan, 2004 46

Random Early Detection (RED)

• Detect incipient congestion, allow bursts
• Keep power (throughput/delay) high

• Keep average queue size low
• Assume hosts respond to lost packets

• Avoid window synchronization
• Randomly mark packets

• Avoid bias against bursty traffic
• Some protection against ill-behaved users

L -5; 10-15-04© Srinivasan Seshan, 2004 47

RED Algorithm

• Maintain running average of queue length
• If avgq < minth do nothing

• Low queuing, send packets through
• If avgq > maxth, drop packet

• Protection from misbehaving sources
• Else mark packet in a manner proportional

to queue length
• Notify sources of incipient congestion

L -5; 10-15-04© Srinivasan Seshan, 2004 48

RED Operation

Min threshMax thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)

13

L -5; 10-15-04© Srinivasan Seshan, 2004 49

RED Algorithm

• Maintain running average of queue length
• Byte mode vs. packet mode – why?

• For each packet arrival
• Calculate average queue size (avg)
• If minth ≤ avgq < maxth

• Calculate probability Pa

• With probability Pa
• Mark the arriving packet

• Else if maxth ≤ avg
• Mark the arriving packet

L -5; 10-15-04© Srinivasan Seshan, 2004 50

Queue Estimation
• Standard EWMA: avgq - (1-wq) avgq + wqqlen

• Special fix for idle periods – why?
• Upper bound on wq depends on minth

• Want to ignore transient congestion
• Can calculate the queue average if a burst arrives

• Set wq such that certain burst size does not exceed minth

• Lower bound on wq to detect congestion relatively
quickly

• Typical wq = 0.002

L -5; 10-15-04© Srinivasan Seshan, 2004 51

Thresholds

• minth determined by the utilization
requirement
• Tradeoff between queuing delay and utilization

• Relationship between maxth and minth
• Want to ensure that feedback has enough time

to make difference in load
• Depends on average queue increase in one

RTT
• Paper suggest ratio of 2

• Current rule of thumb is factor of 3

L -5; 10-15-04© Srinivasan Seshan, 2004 52

Packet Marking

• Marking probability based on queue length
• Pb = maxp(avgq - minth) / (maxth - minth)

• Just marking based on Pb can lead to
clustered marking
• Could result in synchronization
• Better to bias Pb by history of unmarked

packets
• Pa = Pb/(1 - count*Pb)

14

L -5; 10-15-04© Srinivasan Seshan, 2004 53

Packet Marking

• maxp is reflective of typical loss rates
• Paper uses 0.02

• 0.1 is more realistic value
• If network needs marking of 20-30% then

need to buy a better link!
• Gentle variant of RED (recommended)

• Vary drop rate from maxp to 1 as the avgq
varies from maxth to 2* maxth

• More robust to setting of maxth and maxp

L -5; 10-15-04© Srinivasan Seshan, 2004 54

Extending RED for Flow Isolation

• Problem: what to do with non-cooperative
flows?

• Fair queuing achieves isolation using per-
flow state – expensive at backbone routers
• How can we isolate unresponsive flows without

per-flow state?
• RED penalty box

• Monitor history for packet drops, identify flows
that use disproportionate bandwidth

• Isolate and punish those flows

L -5; 10-15-04© Srinivasan Seshan, 2004 55

Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP

L -5; 10-15-04© Srinivasan Seshan, 2004 56

FRED

• Fair Random Early Drop (Sigcomm, 1997)
• Maintain per flow state only for active flows

(ones having packets in the buffer)
• minq and maxq min and max number of

buffers a flow is allowed occupy
• avgcq = average buffers per flow
• Strike count of number of times flow has

exceeded maxq

15

L -5; 10-15-04© Srinivasan Seshan, 2004 57

FRED – Fragile Flows

• Flows that send little data and want to avoid
loss

• minq is meant to protect these
• What should minq be?

• When large number of flows 2-4 packets
• Needed for TCP behavior

• When small number of flows increase to
avgcq

L -5; 10-15-04© Srinivasan Seshan, 2004 58

FRED

• Non-adaptive flows
• Flows with high strike count are not allowed

more than avgcq buffers
• Allows adaptive flows to occasionally burst to

maxq but repeated attempts incur penalty

L -5; 10-15-04© Srinivasan Seshan, 2004 59

CHOKe

• CHOse and Keep/Kill (Infocom 2000)
• Existing schemes to penalize unresponsive

flows (FRED/penalty box) introduce additional
complexity

• Simple, stateless scheme
• During congested periods

• Compare new packet with random pkt in queue
• If from same flow, drop both
• If not, use RED to decide fate of new packet

L -5; 10-15-04© Srinivasan Seshan, 2004 60

CHOKe

• Can improve behavior by selecting more
than one comparison packet
• Needed when more than one misbehaving flow

• Does not completely solve problem
• Aggressive flows are punished but not limited

to fair share
• Not good for low degree of multiplexing

why?

16

L -5; 10-15-04© Srinivasan Seshan, 2004 61

Stochastic Fair Blue
• Same objective as RED Penalty Box

• Identify and penalize misbehaving flows
• Create L hashes with N bins each

• Each bin keeps track of separate marking rate (pm)
• Rate is updated using standard technique and a bin

size
• Flow uses minimum pm of all L bins it belongs to
• Non-misbehaving flows hopefully belong to at least one

bin without a bad flow
• Large numbers of bad flows may cause false positives

L -5; 10-15-04© Srinivasan Seshan, 2004 62

Stochastic Fair Blue

• False positives can continuously penalize
same flow

• Solution: moving hash function over time
• Bad flow no longer shares bin with same flows
• Is history reset does bad flow get to make

trouble until detected again?
• No, can perform hash warmup in background

L -5; 10-15-04© Srinivasan Seshan, 2004 63

Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP

L -5; 10-15-04© Srinivasan Seshan, 2004 64

Fairness Goals

• Allocate resources fairly
• Isolate ill-behaved users

• Router does not send explicit feedback to
source

• Still needs e2e congestion control
• Still achieve statistical muxing

• One flow can fill entire pipe if no contenders
• Work conserving scheduler never idles link if

it has a packet

17

L -5; 10-15-04© Srinivasan Seshan, 2004 65

What is Fairness?
• At what granularity?

• Flows, connections, domains?
• What if users have different RTTs/links/etc.

• Should it share a link fairly or be TCP fair?
• Maximize fairness index?

• Fairness = (Σxi)2/n(Σxi
2) 0<fairness<1

• Basically a tough question to answer – typically
design mechanisms instead of policy
• User = arbitrary granularity

L -5; 10-15-04© Srinivasan Seshan, 2004 66

Max-min Fairness

• Allocate user with “small” demand what it
wants, evenly divide unused resources to
“big” users

• Formally:
• Resources allocated in terms of increasing demand
• No source gets resource share larger than its

demand
• Sources with unsatisfied demands get equal share

of resource

L -5; 10-15-04© Srinivasan Seshan, 2004 67

Max-min Fairness Example

• Assume sources 1..n, with resource
demands X1..Xn in ascending order

• Assume channel capacity C.
• Give C/n to X1; if this is more than X1 wants,

divide excess (C/n - X1) to other sources: each
gets C/n + (C/n - X1)/(n-1)

• If this is larger than what X2 wants, repeat
process

L -5; 10-15-04© Srinivasan Seshan, 2004 68

Implementing Max-min Fairness

• Generalized processor sharing
• Fluid fairness
• Bitwise round robin among all queues

• Why not simple round robin?
• Variable packet length can get more service

by sending bigger packets
• Unfair instantaneous service rate

• What if arrive just before/after packet departs?

18

L -5; 10-15-04© Srinivasan Seshan, 2004 69

Bit-by-bit RR

• Single flow: clock ticks when a bit is
transmitted. For packet i:
• Pi = length, Ai = arrival time, Si = begin transmit

time, Fi = finish transmit time
• Fi = Si+Pi = max (Fi-1, Ai) + Pi

• Multiple flows: clock ticks when a bit from all
active flows is transmitted round number
• Can calculate Fi for each packet if number of

flows is know at all times
• Why do we need to know flow count? need to

know A This can be complicated

L -5; 10-15-04© Srinivasan Seshan, 2004 70

Bit-by-bit RR Illustration

• Not feasible to
interleave bits on
real networks
• FQ simulates bit-by-

bit RR

L -5; 10-15-04© Srinivasan Seshan, 2004 71

Fair Queuing

• Mapping bit-by-bit schedule onto packet
transmission schedule

• Transmit packet with the lowest Fi at any
given time
• How do you compute Fi?

L -5; 10-15-04© Srinivasan Seshan, 2004 72

FQ Illustration

Flow 1

Flow 2

Flow n

I/P O/P

Variation: Weighted Fair Queuing (WFQ)

19

L -5; 10-15-04© Srinivasan Seshan, 2004 73

Bit-by-bit RR Example

F=10

Flow 1
(arriving)

Flow 2
transmitting Output

F=2

F=5
F=8

Flow 1 Flow 2 Output

F=10

Cannot preempt packet
currently being transmitted

L -5; 10-15-04© Srinivasan Seshan, 2004 74

Delay Allocation
• Reduce delay for flows using less than fair share

• Advance finish times for sources whose queues drain
temporarily

• Schedule based on Bi instead of Fi
• Fi = Pi + max (Fi-1, Ai) Bi = Pi + max (Fi-1, Ai - δ)
• If Ai < Fi-1, conversation is active and δ has no effect
• If Ai > Fi-1, conversation is inactive and δ determines

how much history to take into account
• Infrequent senders do better when history is used

L -5; 10-15-04© Srinivasan Seshan, 2004 75

Fair Queuing Tradeoffs
• FQ can control congestion by monitoring flows

• Non-adaptive flows can still be a problem – why?
• Complex state

• Must keep queue per flow
• Hard in routers with many flows (e.g., backbone routers)
• Flow aggregation is a possibility (e.g. do fairness per domain)

• Complex computation
• Classification into flows may be hard
• Must keep queues sorted by finish times
• dR/dt changes whenever the flow count changes

L -5; 10-15-04© Srinivasan Seshan, 2004 76

Overview

• TCP Vegas
• TFRC and Alternatives
• TCP & Buffers
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Core-stateless FQ & XCP

20

L -5; 10-15-04© Srinivasan Seshan, 2004 77

Core-Stateless Fair Queuing
• Key problem with FQ is core routers

• Must maintain state for 1000’s of flows
• Must update state at Gbps line speeds

• CSFQ (Core-Stateless FQ) objectives
• Edge routers should do complex tasks since they have

fewer flows
• Core routers can do simple tasks

• No per-flow state/processing this means that core routers
can only decide on dropping packets not on order of
processing

• Can only provide max-min bandwidth fairness not delay
allocation

L -5; 10-15-04© Srinivasan Seshan, 2004 78

Core-Stateless Fair Queuing

• Edge routers keep state about flows and do
computation when packet arrives

• DPS (Dynamic Packet State)
• Edge routers label packets with the result of

state lookup and computation
• Core routers use DPS and local

measurements to control processing of
packets

L -5; 10-15-04© Srinivasan Seshan, 2004 79

Edge Router Behavior

• Monitor each flow i to measure its arrival
rate (ri)
• EWMA of rate
• Non-constant EWMA constant

• e-T/K where T = current interarrival, K = constant
• Helps adapt to different packet sizes and arrival

patterns

• Rate is attached to each packet

L -5; 10-15-04© Srinivasan Seshan, 2004 80

Core Router Behavior

• Keep track of fair share rate α
• Increasing α does not increase load (F) by N *
∆α

• F(α) = Σi min(ri, α) what does this look like?
• Periodically update α
• Keep track of current arrival rate

• Only update α if entire period was congested or
uncongested

• Drop probability for packet = max(1- α/r, 0)

21

L -5; 10-15-04© Srinivasan Seshan, 2004 81

F vs. Alpha

New alpha

C [linked capacity]

r1 r2 r3 old alpha
alpha

F

L -5; 10-15-04© Srinivasan Seshan, 2004 82

Estimating Fair Share
• Need F(α) = capacity = C

• Can’t keep map of F(α) values would require per
flow state

• Since F(α) is concave, piecewise-linear
• F(0) = 0 and F(α) = current accepted rate = Fc

• F(α) = Fc/ α
• F(αnew) = C αnew = αold * C/Fc

• What if a mistake was made?
• Forced into dropping packets due to buffer capacity
• When queue overflows α is decreased slightly

L -5; 10-15-04© Srinivasan Seshan, 2004 83

Other Issues

• Punishing fire-hoses – why?
• Easy to keep track of in a FQ scheme

• What are the real edges in such a scheme?
• Must trust edges to mark traffic accurately
• Could do some statistical sampling to see if

edge was marking accurately

L -5; 10-15-04© Srinivasan Seshan, 2004 84

Feedback

Round Trip Time

Congestion Window

Congestion Header

Feedback

Round Trip Time

Congestion Window

How does XCP Work?

Feedback =
+ 0.1 packet

22

L -5; 10-15-04© Srinivasan Seshan, 2004 85

Feedback =
+ 0.1 packet

Round Trip Time

Congestion Window

Feedback =
- 0.3 packet

How does XCP Work?

L -5; 10-15-04© Srinivasan Seshan, 2004 86

Congestion Window = Congestion Window + Feedback

Routers compute feedback without
any per-flow state

Routers compute feedback without
any per-flow state

How does XCP Work?

XCP extends ECN and CSFQ

L -5; 10-15-04© Srinivasan Seshan, 2004 87

How Does an XCP Router Compute the
Feedback?

Congestion Controller Fairness Controller
Goal: Divides ∆ between
flows to converge to fairness

Looks at a flow’s state in
Congestion Header

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally
between flows
If ∆ < 0 ⇒ Divide ∆ between
flows proportionally to their
current rates

MIMD AIMD

Goal: Matches input traffic to
link capacity & drains the queue

Looks at aggregate traffic &
queue

Algorithm:
Aggregate traffic changes by ∆
∆ ~ Spare Bandwidth
∆ ~ - Queue Size
So, ∆ = α davg Spare - β Queue

∆Congestion
Controller

Fairness
Controller

L -5; 10-15-04© Srinivasan Seshan, 2004 88

∆ = α davg Spare - β Queue

2
24

0 2αβπα =<< and

Theorem: System converges
to optimal utilization (i.e.,
stable) for any link bandwidth,
delay, number of sources if:

(Proof based on Nyquist
Criterion)

Getting the devil out of the details …

Congestion Controller Fairness Controller

No Parameter Tuning No Parameter Tuning

Algorithm:
If ∆ > 0 ⇒ Divide ∆ equally between flows
If ∆ < 0 ⇒ Divide ∆ between flows
proportionally to their current rates

Need to estimate number of
flows N

∑ ×
=

Tinpkts pktpkt RTTCwndT
N

)/(
1

RTTpkt : Round Trip Time in header
Cwndpkt : Congestion Window in header
T: Counting IntervalNo Per-Flow StateNo Per-Flow State

23

L -5; 10-15-04© Srinivasan Seshan, 2004 89

Lessons

• TCP alternatives
• TCP being used in new/unexpected ways
• Key changes needed

• Routers
• FIFO, drop-tail interacts poorly with TCP
• Various schemes to desynchronize flows and control

loss rate
• Fair-queuing

• Clean resource allocation to flows
• Complex packet classification and scheduling

• Core-stateless FQ & XCP
• Coarse-grain fairness
• Carrying packet state can reduce complexity

L -5; 10-15-04© Srinivasan Seshan, 2004 90

Next Lecture
• 10/22

• No lecture
• Project proposals due

• 10/29
• Midterm

• Covers through today’s lecture
• 90minute exam

• Assigned reading
• [CT90] Architectural Considerations for a New Generation of

Protocols
• [K+99] Web Caching with Consistent Hashing

EXTRA SLIDES

The rest of the slides are FYI

L -5; 10-15-04© Srinivasan Seshan, 2004 92

Overview

• Changing Workloads

24

L -5; 10-15-04© Srinivasan Seshan, 2004 93

Short Transfers
• Fast retransmission needs at least a window of 4 packets

• To detect reordering

• Should not be necessary if small outstanding number of
packets
• Adjust threshold to min(3, cwnd/outstanding)

• Some paths have much more reordering than others
• Adapt threshold to past reordering

• Allow new packets to be transmitted for first few dupacks
• Will create new dupacks and force retransmission
• Will not reduce goodput in situations of reordering
• Follows packet conservation

L -5; 10-15-04© Srinivasan Seshan, 2004 94

Enhanced TCP Loss Recovery

Router

Router

Router

Data Packets Acknowledgments

4

6 5

8 7

3 3

ClientServer

Server

Server

Client

Client

L -5; 10-15-04© Srinivasan Seshan, 2004 95

Enhanced TCP Loss Recovery

Router

Router
2

3 3

Data Packets Acknowledgments

Server

Server

Client

Client

L -5; 10-15-04© Srinivasan Seshan, 2004 96

Short Transfers

• Short transfer performance is limited by
slow start RTT
• Start with a larger initial window
• What is a safe value?

• TCP already burst 3 packets into network during
slow start

• Large initial window = min (4*MSS, max (2*MSS,
4380 bytes)) [rfc2414]

• Enables fast retransmission
• Only used in initial slow start not in any subsequent

slow start

25

L -5; 10-15-04© Srinivasan Seshan, 2004 97

Well Behaved vs. Wild West

• How to ensure hosts/applications do proper
congestion control?

• Who can we trust?
• Only routers that we control
• Can we ask routers to keep track of each flow

• No, we must avoid introducing per flow state into
routers

• Active router mechanisms for control in later
lectures

L -5; 10-15-04© Srinivasan Seshan, 2004 98

Overview

• DECbit

L -5; 10-15-04© Srinivasan Seshan, 2004 99

The DECbit Scheme

• Basic ideas:
• On congestion, router sets congestion

indication (CI) bit on packet
• Receiver relays bit to sender
• Sender adjusts sending rate

• Key design questions:
• When to set CI bit?
• How does sender respond to CI?

L -5; 10-15-04© Srinivasan Seshan, 2004 100

Setting CI Bit

AVG queue length = (previous busy+idle + current interval)/(averaging interval)

Previous cycle Current cycle

Averaging interval

Current time

Time

Queue length

26

L -5; 10-15-04© Srinivasan Seshan, 2004 101

DECbit Routers

• Router tracks average queue length
• Regeneration cycle: queue goes from empty to non-

empty to empty
• Average from start of previous cycle
• If average > 1 router sets bit for flows sending

more than their share
• If average > 2 router sets bit in every packet
• Threshold is a trade-off between queuing and delay
• Optimizes power = (throughput / delay)
• Compromise between sensitivity and stability

• Acks carry bit back to source

L -5; 10-15-04© Srinivasan Seshan, 2004 102

DECbit Source

• Source averages across acks in window
• Congestion if > 50% of bits set
• Will detect congestion earlier than TCP

• Additive increase, multiplicative decrease
• Decrease factor = 0.875

• Lower than TCP (1/2) – why?
• Increase factor = 1 packet
• After change, ignore DECbit for packets in

flight (vs. TCP ignore other drops in window)
• No slow start

L -5; 10-15-04© Srinivasan Seshan, 2004 103

DECbit Evaluation

• Relatively easy to implement
• No per-connection state
• Stable
• Assumes cooperative sources
• Conservative window increase policy

L -5; 10-15-04© Srinivasan Seshan, 2004 104

Overview

• TCP Vegas
• TFRC and Alternatives
• Queuing Disciplines
• RED
• RED Alternatives
• Fair-queuing
• Other FQ variants
• Core-stateless FQ & XCP

27

L -5; 10-15-04© Srinivasan Seshan, 2004 105

Stochastic Fair Queuing
• Similar idea as Stochastic Fair Blue

• Compute a hash on each packet
• Instead of per-flow queue have a queue per hash bin
• An aggressive flow steals traffic from other flows in the

same hash
• Queues serviced in round-robin fashion

• Has problems with packet size unfairness
• Memory allocation across all queues

• When no free buffers, drop packet from longest queue

L -5; 10-15-04© Srinivasan Seshan, 2004 106

Deficit Round Robin

• Each queue is allowed to send Q bytes per
round

• If Q bytes are not sent (because packet is
too large) deficit counter of queue keeps
track of unused portion

• If queue is empty, deficit counter is reset to
0

• Uses hash bins like Stochastic FQ
• Similar behavior as FQ but computationally

simpler

L -5; 10-15-04© Srinivasan Seshan, 2004 107

Self-clocked Fair Queuing

• Virtual time to make computation of finish
time easier

• Problem with basic FQ
• Need be able to know which flows are really

backlogged
• They may not have packet queued because they

were serviced earlier in mapping of bit-by-bit to
packet

• This is necessary to know how bits sent map onto
rounds

• Mapping of real time to round is piecewise linear
however slope can change often

L -5; 10-15-04© Srinivasan Seshan, 2004 108

Self-clocked FQ

• Use the finish time of the packet being
serviced as the virtual time
• The difference in this virtual time and the real

round number can be unbounded
• Amount of service to backlogged flows is

bounded by factor of 2

28

L -5; 10-15-04© Srinivasan Seshan, 2004 109

Start-time Fair Queuing

• Packets are scheduled in order of their start
not finish times

• Self-clocked virtual time = start time of
packet in service

• Main advantage can handle variable rate
service better than other schemes
• Useful for hierarchical schedulers

L -5; 10-15-04© Srinivasan Seshan, 2004 110

Blue

• Uses packet loss and link idle events
instead of average queue length – why?
• Hard to decide what is transient and what is

severe with queue length
• Based on observation that RED is often forced

into drop-tail mode
• Adapt to how bursty and persistent congestion

is by looking at loss/idle events

L -5; 10-15-04© Srinivasan Seshan, 2004 111

Blue

• Basic algorithm
• Upon packet loss, if no update in freeze_time

then increase pm by d1
• Upon link idle, if no update in freeze_time then

decrease pm by d2
• d1 >> d2 why ?

• More critical to react quickly to increase in load

L -5; 10-15-04© Srinivasan Seshan, 2004 112

Comparison: Blue vs. RED
• maxp set to 1

• Normally only 0.1
• Based on type of tests & measurement objectives

• Want to avoid loss marking is not penalized
• Enough connections to ensure utilization is good
• Is this realistic though?

• Blue advantages
• More stable marking rate & queue length
• Avoids dropping packets
• Much better behavior with small buffers

29

L -5; 10-15-04© Srinivasan Seshan, 2004 113

Stochastic Fair Blue

• Is able to differentiate between approx. NL

flows
• Bins do not actually map to buffers

• Each bin only keeps drop rate
• Can statistically multiplex buffers to bins
• Works well since Blue handles small queues
• Has difficulties when large number of

misbehaving flows

L -5; 10-15-04© Srinivasan Seshan, 2004 114

Binomial Congestion Control

• In AIMD
• Increase: Wn+1 = Wn + α
• Decrease: Wn+1 = (1- β) Wn

• In Binomial
• Increase: Wn+1 = Wn + α/Wn

k

• Decrease: Wn+1 = Wn - β Wn
l

• k=0 & l=1 AIMD
• l < 1 results in less than multiplicative decrease

• Good for multimedia applications

L -5; 10-15-04© Srinivasan Seshan, 2004 115

Binomial Congestion Control

• Rate ~ 1/ (loss rate)1/(k+l+1)

• If k+l=1 rate ~ 1/p0.5

• TCP friendly if l ≤ 1
• AIMD (k=0, l=1) is the most aggressive of

this class
• Good for applications that want to probe quickly

and can use any available bandwidth

