
1

15-744: Computer Networking

L-4 TCP

L -4; 10-7-04© Srinivasan Seshan, 2004 2

TCP Basics
• TCP reliability
• Congestion control basics
• TCP congestion control
• Assigned reading

• [JK88] Congestion Avoidance and Control
• [CJ89] Analysis of the Increase and Decrease

Algorithms for Congestion Avoidance in Computer
Networks

• [FF96] Simulation-based Comparisons of Tahoe, Reno,
and SACK TCP

• [FHPW00] Equation-Based Congestion Control for
Unicast Applications

L -4; 10-7-04© Srinivasan Seshan, 2004 3

Key Things You Should Know Already

• Port numbers
• TCP/UDP checksum
• Sliding window flow control

• Sequence numbers
• TCP connection setup

L -4; 10-7-04© Srinivasan Seshan, 2004 4

Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling

2

L -4; 10-7-04© Srinivasan Seshan, 2004 5

Introduction to TCP
• Communication abstraction:

• Reliable
• Ordered
• Point-to-point
• Byte-stream
• Full duplex
• Flow and congestion controlled

• Protocol implemented entirely at the ends
• Fate sharing

• Sliding window with cumulative acks
• Ack field contains last in-order packet received
• Duplicate acks sent when out-of-order packet received

L -4; 10-7-04© Srinivasan Seshan, 2004 6

Evolution of TCP

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestion

collapse

1987
Karn’s algorithm
to better estimate

round-trip time

1986
Congestion

collapse
observed

1988
Van Jacobson’s

algorithms
congestion avoidance
and congestion control
(most implemented in

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75

L -4; 10-7-04© Srinivasan Seshan, 2004 7

TCP Through the 1990s

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
real congestion

avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

Improving TCP
startup

1996
FACK TCP

(Mathis et al)
extension to SACK

L -4; 10-7-04© Srinivasan Seshan, 2004 8

What’s Different From Link Layers?
• Logical link vs. physical link

• Must establish connection
• Variable RTT

• May vary within a connection
• Reordering

• How long can packets live max segment lifetime
• Can’t expect endpoints to exactly match link

• Buffer space availability
• Transmission rate

• Don’t directly know transmission rate

3

L -4; 10-7-04© Srinivasan Seshan, 2004 9

Timeout-based Recovery

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:

• Low RTT unneeded retransmissions
• High RTT poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts
• “Conservation of packets” principle – more than

a window worth of packets in flight

L -4; 10-7-04© Srinivasan Seshan, 2004 10

Initial Round-trip Estimator

• Round trip times exponentially averaged:
• New RTT = α (old RTT) + (1 - α) (new sample)
• Recommended value for α: 0.8 - 0.9

• 0.875 for most TCP’s

• Retransmit timer set to β RTT, where β = 2
• Every time timer expires, RTO exponentially backed-off
• Like Ethernet

• Not good at preventing spurious timeouts

L -4; 10-7-04© Srinivasan Seshan, 2004 11

Jacobson’s Retransmission Timeout

• Key observation:
• At high loads round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation or

RRTT
• rttvar = χ * dev + (1- χ)rttvar

• dev = linear deviation
• Inappropriately named – actually smoothed linear

deviation

L -4; 10-7-04© Srinivasan Seshan, 2004 12

Retransmission Ambiguity

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X

4

L -4; 10-7-04© Srinivasan Seshan, 2004 13

Karn’s RTT Estimator

• Accounts for retransmission ambiguity
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this
segment

• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful

transmission

L -4; 10-7-04© Srinivasan Seshan, 2004 14

Timestamp Extension

• Used to improve timeout mechanism by
more accurate measurement of RTT

• When sending a packet, insert current
timestamp into option
• 4 bytes for seconds, 4 bytes for microseconds

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet

L -4; 10-7-04© Srinivasan Seshan, 2004 15

Timer Granularity

• Many TCP implementations set RTO in
multiples of 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary

quickly due to cross traffic
• Make timers interrupts efficient

L -4; 10-7-04© Srinivasan Seshan, 2004 16

Delayed ACKS

• Problem:
• In request/response programs, you send

separate ACK and Data packets for each
transaction

• Solution:
• Don’t ACK data immediately
• Wait 200ms (must be less than 500ms – why?)
• Must ACK every other packet
• Must not delay duplicate ACKs

5

L -4; 10-7-04© Srinivasan Seshan, 2004 17

Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling
L -4; 10-7-04© Srinivasan Seshan, 2004 18

TCP Flavors

• Tahoe, Reno, Vegas differ in data-driven
reliability

• TCP Tahoe (distributed with 4.3BSD Unix)
• Original implementation of Van Jacobson’s

mechanisms (VJ paper)
• Includes:

• Slow start
• Congestion avoidance
• Fast retransmit

L -4; 10-7-04© Srinivasan Seshan, 2004 19

Fast Retransmit
• What are duplicate acks (dupacks)?

• Repeated acks for the same sequence
• When can duplicate acks occur?

• Loss
• Packet re-ordering
• Window update – advertisement of new flow control

window
• Assume re-ordering is infrequent and not of large

magnitude
• Use receipt of 3 or more duplicate acks as indication of

loss
• Don’t wait for timeout to retransmit packet

L -4; 10-7-04© Srinivasan Seshan, 2004 20

Fast Retransmit

Time

Sequence No Duplicate Acks
Retransmission

X

6

L -4; 10-7-04© Srinivasan Seshan, 2004 21

Multiple Losses

Time

Sequence No Duplicate Acks

Retransmission
X

X

XX
Now what?

L -4; 10-7-04© Srinivasan Seshan, 2004 22

Time

Sequence No
X

X

XX

Tahoe

L -4; 10-7-04© Srinivasan Seshan, 2004 23

TCP Reno (1990)
• All mechanisms in Tahoe
• Addition of fast-recovery

• Opening up congestion window after fast retransmit
• Delayed acks
• Header prediction

• Implementation designed to improve performance
• Has common case code inlined

• With multiple losses, Reno typically timeouts
because it does not receive enough duplicate
acknowledgements

L -4; 10-7-04© Srinivasan Seshan, 2004 24

Reno

Time

Sequence No
X

X

XX

Now what? timeout

7

L -4; 10-7-04© Srinivasan Seshan, 2004 25

NewReno

• The ack that arrives after retransmission
(partial ack) should indicate that a second
loss occurred

• When does NewReno timeout?
• When there are fewer than three dupacks for

first loss
• When partial ack is lost

• How fast does it recover losses?
• One per RTT

L -4; 10-7-04© Srinivasan Seshan, 2004 26

NewReno

Time

Sequence No
X

X

XX

Now what? partial ack
recovery

L -4; 10-7-04© Srinivasan Seshan, 2004 27

SACK

• Basic problem is that cumulative acks
provide little information
• Ack for just the packet received

• What if acks are lost? carry cumulative also
• Not used

• Bitmask of packets received
• Selective acknowledgement (SACK)

• How to deal with reordering

L -4; 10-7-04© Srinivasan Seshan, 2004 28

SACK

Time

Sequence No
X

X

XX

Now what? – send
retransmissions as soon
as detected

8

L -4; 10-7-04© Srinivasan Seshan, 2004 29

Performance Issues

• Timeout >> fast rexmit
• Need 3 dupacks/sacks
• Not great for small transfers

• Don’t have 3 packets outstanding
• What are real loss patterns like?

L -4; 10-7-04© Srinivasan Seshan, 2004 30

Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling

L -4; 10-7-04© Srinivasan Seshan, 2004 31

Congestion

• Different sources compete for resources
inside network

• Why is it a problem?
• Sources are unaware of current state of resource
• Sources are unaware of each other
• In many situations will result in < 1.5 Mbps of

throughput (congestion collapse)

10 Mbps

100 Mbps

1.5 Mbps

L -4; 10-7-04© Srinivasan Seshan, 2004 32

Causes & Costs of Congestion

• Four senders – multihop paths
• Timeout/retransmit

Q: What happens as rate
increases?

9

L -4; 10-7-04© Srinivasan Seshan, 2004 33

Causes & Costs of Congestion

• When packet dropped, any “upstream
transmission capacity used for that packet
was wasted!

L -4; 10-7-04© Srinivasan Seshan, 2004 34

Congestion Collapse
• Definition: Increase in network load results in

decrease of useful work done
• Many possible causes

• Spurious retransmissions of packets still in flight
• Classical congestion collapse
• How can this happen with packet conservation
• Solution: better timers and TCP congestion control

• Undelivered packets
• Packets consume resources and are dropped elsewhere in

network
• Solution: congestion control for ALL traffic

L -4; 10-7-04© Srinivasan Seshan, 2004 35

Other Congestion Collapse Causes
• Fragments

• Mismatch of transmission and retransmission units
• Solutions

• Make network drop all fragments of a packet (early packet
discard in ATM)

• Do path MTU discovery

• Control traffic
• Large percentage of traffic is for control

• Headers, routing messages, DNS, etc.

• Stale or unwanted packets
• Packets that are delayed on long queues
• “Push” data that is never used

L -4; 10-7-04© Srinivasan Seshan, 2004 36

Where to Prevent Collapse?

• Can end hosts prevent problem?
• Yes, but must trust end hosts to do right thing
• E.g., sending host must adjust amount of data it

puts in the network based on detected
congestion

• Can routers prevent collapse?
• No, not all forms of collapse
• Doesn’t mean they can’t help
• Sending accurate congestion signals
• Isolating well-behaved from ill-behaved sources

10

L -4; 10-7-04© Srinivasan Seshan, 2004 37

Congestion Control and Avoidance

• A mechanism which:
• Uses network resources efficiently
• Preserves fair network resource allocation
• Prevents or avoids collapse

• Congestion collapse is not just a theory
• Has been frequently observed in many

networks

L -4; 10-7-04© Srinivasan Seshan, 2004 38

Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling

L -4; 10-7-04© Srinivasan Seshan, 2004 39

Objectives

• Simple router behavior
• Distributedness
• Efficiency: Xknee = Σxi(t)
• Fairness: (Σxi)2/n(Σxi

2)
• Power: (throughputα/delay)
• Convergence: control system must be

stable

L -4; 10-7-04© Srinivasan Seshan, 2004 40

Basic Control Model

• Let’s assume window-based control
• Reduce window when congestion is

perceived
• How is congestion signaled?

• Either mark or drop packets
• When is a router congested?

• Drop tail queues – when queue is full
• Average queue length – at some threshold

• Increase window otherwise
• Probe for available bandwidth – how?

11

L -4; 10-7-04© Srinivasan Seshan, 2004 41

Linear Control

• Many different possibilities for reaction to
congestion and probing
• Examine simple linear controls
• Window(t + 1) = a + b Window(t)
• Different ai/bi for increase and ad/bd for

decrease
• Supports various reaction to signals

• Increase/decrease additively
• Increased/decrease multiplicatively
• Which of the four combinations is optimal?

L -4; 10-7-04© Srinivasan Seshan, 2004 42

Phase plots

• Simple way to visualize behavior of
competing connections over time

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

L -4; 10-7-04© Srinivasan Seshan, 2004 43

Phase plots

• What are desirable properties?
• What if flows are not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2
Optimal point

Overload

Underutilization

L -4; 10-7-04© Srinivasan Seshan, 2004 44

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

• Both X1 and X2 increase/decrease by the same
amount over time
• Additive increase improves fairness and additive

decrease reduces fairness

12

L -4; 10-7-04© Srinivasan Seshan, 2004 45

Multiplicative Increase/Decrease

• Both X1 and X2 increase by the same factor
over time
• Extension from origin – constant fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

L -4; 10-7-04© Srinivasan Seshan, 2004 46

Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

L -4; 10-7-04© Srinivasan Seshan, 2004 47

Distributed Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

a=0
b=1

L -4; 10-7-04© Srinivasan Seshan, 2004 48

Convergence to Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xH’

13

L -4; 10-7-04© Srinivasan Seshan, 2004 49

Convergence to Efficiency & Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xH’

L -4; 10-7-04© Srinivasan Seshan, 2004 50

Increase

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

xL

L -4; 10-7-04© Srinivasan Seshan, 2004 51

Constraints

• Distributed efficiency
• I.e., Σ Window(t+1) > Σ Window(t) during

increase
• ai > 0 & bi ≥ 1
• Similarly, ad < 0 & bd ≤ 1

• Must never decrease fairness
• a & b’s must be ≥ 0
• ai/bi > 0 and ad/bd ≥ 0

• Full constraints
• ad = 0, 0 ≤ bd < 1, ai > 0 and bi ≥ 1

L -4; 10-7-04© Srinivasan Seshan, 2004 52

What is the Right Choice?
• Constraints limit us to AIMD

• Can have multiplicative term in increase (MAIMD)
• AIMD moves towards optimal point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

14

L -4; 10-7-04© Srinivasan Seshan, 2004 53

Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling
L -4; 10-7-04© Srinivasan Seshan, 2004 54

TCP Congestion Control
• Motivated by ARPANET congestion collapse
• Underlying design principle: packet conservation

• At equilibrium, inject packet into network only when one
is removed

• Basis for stability of physical systems
• Why was this not working?

• Connection doesn’t reach equilibrium
• Spurious retransmissions
• Resource limitations prevent equilibrium

L -4; 10-7-04© Srinivasan Seshan, 2004 55

TCP Congestion Control - Solutions

• Reaching equilibrium
• Slow start

• Eliminates spurious retransmissions
• Accurate RTO estimation
• Fast retransmit

• Adapting to resource availability
• Congestion avoidance

L -4; 10-7-04© Srinivasan Seshan, 2004 56

TCP Congestion Control

• Changes to TCP motivated by
ARPANET congestion collapse

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly
• ACK clocking

15

L -4; 10-7-04© Srinivasan Seshan, 2004 57

AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and

results in a multiplicative rate decrease
• Factor of 2

• TCP periodically probes for available bandwidth
by increasing its rate

Time

Rate

L -4; 10-7-04© Srinivasan Seshan, 2004 58

Implementation Issue
• Operating system timers are very coarse – how to

pace packets out smoothly?
• Implemented using a congestion window that

limits how much data can be in the network.
• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of
outstanding data is less than the congestion
window.
• The amount of outstanding data is increased on a

“send” and decreased on “ack”
• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window

L -4; 10-7-04© Srinivasan Seshan, 2004 59

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet? 1 MSS worth of bytes
• After cwnd packets have passed by

approximately increase of 1 MSS

• Implements AIMD

L -4; 10-7-04© Srinivasan Seshan, 2004 60

Congestion Avoidance Sequence
Plot

Time

Sequence No

Packets

Acks

16

L -4; 10-7-04© Srinivasan Seshan, 2004 61

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

L -4; 10-7-04© Srinivasan Seshan, 2004 62

Packet Conservation

• At equilibrium, inject packet into network
only when one is removed
• Sliding window and not rate controlled
• But still need to avoid sending burst of packets

would overflow links
• Need to carefully pace out packets
• Helps provide stability

• Need to eliminate spurious retransmissions
• Accurate RTO estimation
• Better loss recovery techniques (e.g. fast

retransmit)

L -4; 10-7-04© Srinivasan Seshan, 2004 63

TCP Packet Pacing
• Congestion window helps to “pace” the

transmission of data packets
• In steady state, a packet is sent when an ack is

received
• Data transmission remains smooth, once it is smooth
• Self-clocking behavior

Pr

Pb

ArAb

ReceiverSender

As

L -4; 10-7-04© Srinivasan Seshan, 2004 64

Reaching Steady State

• Doing AIMD is fine in steady state but
slow…

• How does TCP know what is a good initial
rate to start with?
• Should work both for a CDPD (10s of Kbps or

less) and for supercomputer links (10 Gbps and
growing)

• Quick initial phase to help get up to speed
(slow start)

17

L -4; 10-7-04© Srinivasan Seshan, 2004 65

Slow Start Packet Pacing

• How do we get this
clocking behavior to
start?
• Initialize cwnd = 1
• Upon receipt of every

ack, cwnd = cwnd + 1
• Implications

• Window actually
increases to W in RTT *
log2(W)

• Can overshoot window
and cause packet loss

L -4; 10-7-04© Srinivasan Seshan, 2004 66

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

L -4; 10-7-04© Srinivasan Seshan, 2004 67

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

L -4; 10-7-04© Srinivasan Seshan, 2004 68

Return to Slow Start

• If packet is lost we lose our self clocking as
well
• Need to implement slow-start and congestion

avoidance together
• When timeout occurs set ssthresh to 0.5w

• If cwnd < ssthresh, use slow start
• Else use congestion avoidance

18

L -4; 10-7-04© Srinivasan Seshan, 2004 69

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

L -4; 10-7-04© Srinivasan Seshan, 2004 70

How to Change Window

• When a loss occurs have W packets
outstanding

• New cwnd = 0.5 * cwnd
• How to get to new state?

L -4; 10-7-04© Srinivasan Seshan, 2004 71

Fast Recovery

• Each duplicate ack notifies sender that
single packet has cleared network

• When < cwnd packets are outstanding
• Allow new packets out with each new duplicate

acknowledgement
• Behavior

• Sender is idle for some time – waiting for ½
cwnd worth of dupacks

• Transmits at original rate after wait
• Ack clocking rate is same as before loss

L -4; 10-7-04© Srinivasan Seshan, 2004 72

Fast Recovery

Time

Sequence No
Sent for each dupack after

W/2 dupacks arrive
X

19

L -4; 10-7-04© Srinivasan Seshan, 2004 73

NewReno Changes

• Send a new packet out for each pair of
dupacks
• Adapt more gradually to new window

• Will not halve congestion window again until
recovery is completed
• Identifies congestion events vs. congestion

signals
• Initial estimation for ssthresh

L -4; 10-7-04© Srinivasan Seshan, 2004 74

Rate Halving Recovery

Time

Sequence No

Sent after every
other dupack

X

L -4; 10-7-04© Srinivasan Seshan, 2004 75

Delayed Ack Impact

• TCP congestion control triggered by
acks
• If receive half as many acks window

grows half as fast
• Slow start with window = 1

• Will trigger delayed ack timer
• First exchange will take at least 200ms
• Start with > 1 initial window

• Bug in BSD, now a “feature”/standard

L -4; 10-7-04© Srinivasan Seshan, 2004 76

Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling

20

L -4; 10-7-04© Srinivasan Seshan, 2004 77

TCP Modeling
• Given the congestion behavior of TCP can we

predict what type of performance we should get?
• What are the important factors

• Loss rate
• Affects how often window is reduced

• RTT
• Affects increase rate and relates BW to window

• RTO
• Affects performance during loss recovery

• MSS
• Affects increase rate

L -4; 10-7-04© Srinivasan Seshan, 2004 78

Overall TCP Behavior

Time

Window

• Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

L -4; 10-7-04© Srinivasan Seshan, 2004 79

Simple TCP Model

• Some additional assumptions
• Fixed RTT
• No delayed ACKs

• In steady state, TCP losses packet each
time window reaches W packets
• Window drops to W/2 packets
• Each RTT window increases by 1 packet W/2

* RTT before next loss
• BW = MSS * avg window/RTT = MSS * (W +

W/2)/(2 * RTT) = .75 * MSS * W / RTT

L -4; 10-7-04© Srinivasan Seshan, 2004 80

Simple Loss Model

• What was the loss rate?
• Packets transferred = (.75 W/RTT) * (W/2 *

RTT) = 3W2/8
• 1 packet lost loss rate = p = 8/3W2

• W = sqrt(8 / (3 * loss rate))
• BW = .75 * MSS * W / RTT

• BW = MSS / (RTT * sqrt (2/3p))

21

L -4; 10-7-04© Srinivasan Seshan, 2004 81

TCP Friendliness
• What does it mean to be TCP friendly?

• TCP is not going away
• Any new congestion control must compete with TCP

flows
• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair share, or it

will never become popular

• How is this quantified/shown?
• Has evolved into evaluating loss/throughput behavior
• If it shows 1/sqrt(p) behavior it is ok
• But is this really true?

L -4; 10-7-04© Srinivasan Seshan, 2004 82

TCP Performance

• Can TCP saturate a link?
• Congestion control

• Increase utilization until… link becomes
congested

• React by decreasing window by 50%
• Window is proportional to rate * RTT

• Doesn’t this mean that the network
oscillates between 50 and 100% utilization?
• Average utilization = 75%??
• No…this is *not* right!

L -4; 10-7-04© Srinivasan Seshan, 2004 83

TCP Congestion Control

Only W packets
may be outstanding

Rule for adjusting W
• If an ACK is received: W ← W+1/W
• If a packet is lost: W ← W/2

Source Dest

maxW

2
maxW

t

Window size

L -4; 10-7-04© Srinivasan Seshan, 2004 84

Single TCP Flow
Router without buffers

22

L -4; 10-7-04© Srinivasan Seshan, 2004 85

Summary Unbuffered Link

t

W Minimum window
for full utilization

• The router can’t fully utilize the link
• If the window is too small, link is not full
• If the link is full, next window increase causes drop
• With no buffer it still achieves 75% utilization

L -4; 10-7-04© Srinivasan Seshan, 2004 86

TCP Performance

• In the real world, router queues play
important role
• Window is proportional to rate * RTT

• But, RTT changes as well the window
• Window to fill links = propagation RTT *

bottleneck bandwidth
• If window is larger, packets sit in queue on

bottleneck link

L -4; 10-7-04© Srinivasan Seshan, 2004 87

TCP Performance
• If we have a large router queue can get 100%

utilization
• But, router queues can cause large delays

• How big does the queue need to be?
• Windows vary from W W/2

• Must make sure that link is always full
• W/2 > RTT * BW
• W = RTT * BW + Qsize
• Therefore, Qsize > RTT * BW

• Ensures 100% utilization
• Delay?

• Varies between RTT and 2 * RTT

L -4; 10-7-04© Srinivasan Seshan, 2004 88

Single TCP Flow
Router with large enough buffers for full link utilization

23

L -4; 10-7-04© Srinivasan Seshan, 2004 89

Summary Buffered Link

t

W

Minimum window
for full utilization

• With sufficient buffering we achieve full link utilization
• The window is always above the critical threshold
• Buffer absorbs changes in window size

• Buffer Size = Height of TCP Sawtooth
• Minimum buffer size needed is 2T*C

• This is the origin of the rule-of-thumb

Buffer

L -4; 10-7-04© Srinivasan Seshan, 2004 90

Example

• 10Gb/s linecard
• Requires 300Mbytes of buffering.
• Read and write 40 byte packet every 32ns.

• Memory technologies
• DRAM: require 4 devices, but too slow.
• SRAM: require 80 devices, 1kW, $2000.

• Problem gets harder at 40Gb/s
• Hence RLDRAM, FCRAM, etc.

L -4; 10-7-04© Srinivasan Seshan, 2004 91

Rule-of-thumb
• Rule-of-thumb makes sense for one flow
• Typical backbone link has > 20,000 flows
• Does the rule-of-thumb still hold?

L -4; 10-7-04© Srinivasan Seshan, 2004 92

If flows are synchronized

• Aggregate window has same dynamics
• Therefore buffer occupancy has same dynamics
• Rule-of-thumb still holds.

2
maxW

t

max

2
W∑

maxW∑

maxW

24

L -4; 10-7-04© Srinivasan Seshan, 2004 93

If flows are not synchronized

Probability
Distribution

B

0

Buffer Size

∑W

L -4; 10-7-04© Srinivasan Seshan, 2004 94

Central Limit Theorem

• CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)

• Width of Gaussian decreases with
• Buffer size should also decreases with

n
CT

n
BB n ×

=→ = 21

n
1

n
1

L -4; 10-7-04© Srinivasan Seshan, 2004 95

Required buffer size

2T C
n
×

Simulation

L -4; 10-7-04© Srinivasan Seshan, 2004 96

Important Lessons

• How does TCP implement AIMD?
• Sliding window, slow start & ack clocking
• How to maintain ack clocking during loss

recovery fast recovery

• Modern TCP loss recovery
• Why are timeouts bad?
• How to avoid them? fast retransmit, SACK

• How does TCP fully utilize a link?
• Role of router buffers

25

L -4; 10-7-04© Srinivasan Seshan, 2004 97

Next Lecture

• TCP Vegas/alternative congestion control schemes
• RED
• Fair queuing
• Core-stateless fair queuing/XCP
• Assigned reading

• [BP95] TCP Vegas: End to End Congestion Avoidance on a Global
Internet

• [FJ93] Random Early Detection Gateways for Congestion
Avoidance

• [DKS90] Analysis and Simulation of a Fair Queueing Algorithm,
Internetworking: Research and Experience

• [SSZ98] Core-Stateless Fair Queueing: Achieving Approximately
Fair Allocations in High Speed Networks

• [KHR02] Congestion Control for High Bandwidth-Delay Product
Networks

EXTRA SLIDES

The rest of the slides are FYI

L -4; 10-7-04© Srinivasan Seshan, 2004 99

Integrity & Demultiplexing
• Port numbers

• Demultiplex from/to process
• Servers wait on well known ports (/etc/services)

• Checksum
• Is it sufficient to just checksum the packet contents?
• No, need to ensure correct source/destination

• Pseudoheader – portion of IP hdr that are critical
• Checksum covers Pseudoheader, transport hdr, and packet

body

• UDP provides just integrity and demux

L -4; 10-7-04© Srinivasan Seshan, 2004 100

TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK

26

L -4; 10-7-04© Srinivasan Seshan, 2004 101

TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes

without receiving an acknowledgement
• When the data is acknowledged then the

window slides forward
• Each packet advertises a window size

• Indicates number of bytes the receiver has
space for

• Original TCP always sent entire window
• Congestion control now limits this

L -4; 10-7-04© Srinivasan Seshan, 2004 102

Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked

L -4; 10-7-04© Srinivasan Seshan, 2004 103

Acked but not
delivered to user

Not yet
acked

Receive buffer

window

Window Flow Control: Receive Side

L -4; 10-7-04© Srinivasan Seshan, 2004 104

TCP Persist

• What happens if window is 0?
• Receiver updates window when application

reads data
• What if this update is lost?

• TCP Persist state
• Sender periodically sends 1 byte packets
• Receiver responds with ACK even if it can’t

store the packet

27

L -4; 10-7-04© Srinivasan Seshan, 2004 105

Connection Establishment

• A and B must agree on initial sequence
number selection
• Use 3-way handshake

A B

SYN + Seq A
SYN+ACK-A + Seq B

ACK-B

L -4; 10-7-04© Srinivasan Seshan, 2004 106

Sequence Number Selection

• Why not simply chose 0?
• Must avoid overlap with earlier incarnation

L -4; 10-7-04© Srinivasan Seshan, 2004 107

Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN

create TCB
passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK
Rcv SYN, ACK

rcv SYN
snd ACK

L -4; 10-7-04© Srinivasan Seshan, 2004 108

Connection Tear-down

• Normal termination
• Allow unilateral close

• TCP must continue to receive data even
after closing

• Cannot close connection immediately
• What if a new connection restarts and uses

same sequence number?

28

L -4; 10-7-04© Srinivasan Seshan, 2004 109

Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack

L -4; 10-7-04© Srinivasan Seshan, 2004 110

Connection Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN
CLOSE

send FIN
CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

rcv ACK of FIN

snd ACK
rcv FIN+ACK

L -4; 10-7-04© Srinivasan Seshan, 2004 111

Detecting Half-open Connections

1. (CRASH)
2. CLOSED
3. SYN-SENT <SEQ=400><CTL=SYN>
4. (!!) <SEQ=300><ACK=100><CTL=ACK>
5. SYN-SENT <SEQ=100><CTL=RST>
6. SYN-SENT
7. SYN-SENT <SEQ=400><CTL=SYN>

(send 300, receive 100)
ESTABLISHED
(??)
ESTABLISHED
(Abort!!)
CLOSED

TCP BTCP A

L -4; 10-7-04© Srinivasan Seshan, 2004 112

Observed TCP Problems

• Too many small packets
• Silly window syndrome
• Nagel’s algorithm

• Initial sequence number selection
• Amount of state maintained

29

L -4; 10-7-04© Srinivasan Seshan, 2004 113

Silly Window Syndrome

• Problem: (Clark, 1982)
• If receiver advertises small increases in the

receive window then the sender may waste
time sending lots of small packets

• Solution
• Receiver must not advertise small window

increases
• Increase window by min(MSS,RecvBuffer/2)

L -4; 10-7-04© Srinivasan Seshan, 2004 114

Nagel’s Algorithm

• Small packet problem:
• Don’t want to send a 41 byte packet for each

keystroke
• How long to wait for more data?

• Solution:
• Allow only one outstanding small (not full sized)

segment that has not yet been acknowledged

L -4; 10-7-04© Srinivasan Seshan, 2004 115

Why is Selecting ISN Important?

• Suppose machine X selects ISN based on
predictable sequence

• Fred has .rhosts to allow login to X from Y
• Evil Ed attacks

• Disables host Y – denial of service attack
• Make a bunch of connections to host X
• Determine ISN pattern a guess next ISN
• Fake pkt1: [<src Y><dst X>, guessed ISN]
• Fake pkt2: desired command

L -4; 10-7-04© Srinivasan Seshan, 2004 116

Time Wait Issues

• Web servers not clients close connection
first
• Established Fin-Waits Time-Wait

Closed
• Why would this be a problem?

• Time-Wait state lasts for 2 * MSL
• MSL is should be 120 seconds (is often 60s)
• Servers often have order of magnitude more

connections in Time-Wait

30

L -4; 10-7-04© Srinivasan Seshan, 2004 117

TCP Extensions

• Implemented using TCP options
• Timestamp
• Protection from sequence number wraparound
• Large windows

L -4; 10-7-04© Srinivasan Seshan, 2004 118

Protection From Wraparound

• Wraparound time vs. Link speed
• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds < MSL!
• 1.2Gbps: 28 seconds

• Use timestamp to distinguish sequence
number wraparound

L -4; 10-7-04© Srinivasan Seshan, 2004 119

Large Windows
• Delay-bandwidth product for 100ms delay

• 1.5Mbps: 18KB
• 10Mbps: 122KB > max 16bit window
• 45Mbps: 549KB
• 100Mbps: 1.2MB
• 622Mbps: 7.4MB
• 1.2Gbps: 14.8MB

• Scaling factor on advertised window
• Specifies how many bits window must be shifted to the

left
• Scaling factor exchanged during connection setup

L -4; 10-7-04© Srinivasan Seshan, 2004 120

Maximum Segment Size (MSS)

• Exchanged at connection setup
• Typically pick MTU of local link

• What all does this effect?
• Efficiency
• Congestion control
• Retransmission

• Path MTU discovery
• Why should MTU match MSS?

