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15-744: Computer Networking

L-4 TCP
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TCP Basics
• TCP reliability
• Congestion control basics
• TCP congestion control
• Assigned reading

• [JK88] Congestion Avoidance and Control
• [CJ89] Analysis of the Increase and Decrease 

Algorithms for Congestion Avoidance in Computer 
Networks

• [FF96] Simulation-based Comparisons of Tahoe, Reno, 
and SACK TCP

• [FHPW00] Equation-Based Congestion Control for 
Unicast Applications 
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Key Things You Should Know Already

• Port numbers
• TCP/UDP checksum
• Sliding window flow control

• Sequence numbers
• TCP connection setup
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Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling
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Introduction to TCP
• Communication abstraction:

• Reliable
• Ordered
• Point-to-point
• Byte-stream
• Full duplex
• Flow and congestion controlled

• Protocol implemented entirely at the ends
• Fate sharing

• Sliding window with cumulative acks
• Ack field contains last in-order packet received
• Duplicate acks sent when out-of-order packet received
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Evolution of TCP

1975 1980 1985 1990

1982
TCP & IP

RFC 793 & 791

1974
TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983
BSD Unix 4.2

supports TCP/IP

1984
Nagel’s algorithm
to reduce overhead

of small packets;
predicts congestion 

collapse

1987
Karn’s algorithm
to better estimate 

round-trip time

1986
Congestion 

collapse
observed

1988
Van Jacobson’s 

algorithms
congestion avoidance 
and congestion control
(most implemented in 

4.3BSD Tahoe)

1990
4.3BSD Reno
fast retransmit
delayed ACK’s

1975
Three-way handshake

Raymond Tomlinson
In SIGCOMM 75
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TCP Through the 1990s

1993 1994 1996

1994
ECN

(Floyd)
Explicit 

Congestion
Notification

1993
TCP Vegas 

(Brakmo et al)
real congestion 

avoidance

1994
T/TCP

(Braden)
Transaction

TCP

1996
SACK TCP
(Floyd et al)

Selective 
Acknowledgement

1996
Hoe

Improving TCP 
startup

1996
FACK TCP

(Mathis et al)
extension to SACK
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What’s Different From Link Layers?
• Logical link vs. physical link

• Must establish connection
• Variable RTT

• May vary within a connection
• Reordering

• How long can packets live max segment lifetime
• Can’t expect endpoints to exactly match link

• Buffer space availability
• Transmission rate

• Don’t directly know transmission rate
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Timeout-based Recovery

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:

• Low  RTT unneeded retransmissions
• High RTT poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast, or too slow!

• Spurious timeouts
• “Conservation of packets” principle – more than 

a window worth of packets in flight
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Initial Round-trip Estimator

• Round trip times exponentially averaged:
• New RTT = α (old RTT) + (1 - α) (new sample)
• Recommended value for α: 0.8 - 0.9

• 0.875 for most TCP’s

• Retransmit timer set to β RTT, where β = 2
• Every time timer expires, RTO exponentially backed-off
• Like Ethernet

• Not good at preventing spurious timeouts
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Jacobson’s Retransmission Timeout

• Key observation:
• At high loads round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation or 

RRTT
• rttvar = χ * dev + (1- χ)rttvar

• dev = linear deviation 
• Inappropriately named – actually smoothed linear 

deviation
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Retransmission Ambiguity

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X
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Karn’s RTT Estimator

• Accounts for retransmission ambiguity
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this 
segment

• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful 

transmission
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Timestamp Extension

• Used to improve timeout mechanism by 
more accurate measurement of RTT

• When sending a packet, insert current 
timestamp into option
• 4 bytes for seconds, 4 bytes for microseconds

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

• Removes retransmission ambiguity
• Can get RTT sample on any packet
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Timer Granularity

• Many TCP implementations set RTO in 
multiples of 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary 

quickly due to cross traffic
• Make timers interrupts efficient
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Delayed ACKS

• Problem:
• In request/response programs, you send 

separate ACK and Data packets for each 
transaction

• Solution:
• Don’t ACK data immediately
• Wait 200ms (must be less than 500ms – why?)
• Must ACK every other packet
• Must not delay duplicate ACKs
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Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling
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TCP Flavors

• Tahoe, Reno, Vegas differ in data-driven 
reliability

• TCP Tahoe (distributed with 4.3BSD Unix)
• Original implementation of Van Jacobson’s 

mechanisms (VJ paper)
• Includes:

• Slow start 
• Congestion avoidance
• Fast retransmit
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Fast Retransmit
• What are duplicate acks (dupacks)?

• Repeated acks for the same sequence
• When can duplicate acks occur?

• Loss
• Packet re-ordering
• Window update – advertisement of new flow control 

window
• Assume re-ordering is infrequent and not of large 

magnitude
• Use receipt of 3 or more duplicate acks as indication of 

loss
• Don’t wait for timeout to retransmit packet

L -4; 10-7-04© Srinivasan Seshan, 2004 20

Fast Retransmit

Time

Sequence No Duplicate Acks
Retransmission

X
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Multiple Losses

Time

Sequence No Duplicate Acks

Retransmission
X

X

XX
Now what?
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Time

Sequence No
X

X

XX

Tahoe
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TCP Reno (1990)
• All mechanisms in Tahoe
• Addition of fast-recovery 

• Opening up congestion window after fast retransmit
• Delayed acks
• Header prediction 

• Implementation designed to improve performance
• Has common case code inlined

• With multiple losses, Reno typically timeouts 
because it does not receive enough duplicate 
acknowledgements
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Reno

Time

Sequence No
X

X

XX

Now what? timeout
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NewReno

• The ack that arrives after retransmission 
(partial ack) should indicate that a second 
loss occurred

• When does NewReno timeout?
• When there are fewer than three dupacks for 

first loss
• When partial ack is lost

• How fast does it recover losses?
• One per RTT
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NewReno

Time

Sequence No
X

X

XX

Now what? partial ack
recovery
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SACK

• Basic problem is that cumulative acks
provide little information
• Ack for just the packet received

• What if acks are lost? carry cumulative also
• Not used

• Bitmask of packets received 
• Selective acknowledgement (SACK)

• How to deal with reordering
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SACK

Time

Sequence No
X

X

XX

Now what? – send
retransmissions as soon
as detected
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Performance Issues

• Timeout >> fast rexmit
• Need 3 dupacks/sacks
• Not great for small transfers

• Don’t have 3 packets outstanding
• What are real loss patterns like?
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Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling
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Congestion

• Different sources compete for resources 
inside network

• Why is it a problem?
• Sources are unaware of current state of resource
• Sources are unaware of each other
• In many situations will result in < 1.5 Mbps of 

throughput (congestion collapse)

10 Mbps

100 Mbps

1.5 Mbps
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Causes & Costs of Congestion

• Four senders – multihop paths
• Timeout/retransmit

Q: What happens as rate     
increases?
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Causes & Costs of Congestion

• When packet dropped, any “upstream 
transmission capacity used for that packet 
was wasted!
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Congestion Collapse
• Definition: Increase in network load results in 

decrease of useful work done
• Many possible causes

• Spurious retransmissions of packets still in flight
• Classical congestion collapse
• How can this happen with packet conservation
• Solution: better timers and TCP congestion control

• Undelivered packets
• Packets consume resources and are dropped elsewhere in 

network
• Solution: congestion control for ALL traffic
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Other Congestion Collapse Causes
• Fragments

• Mismatch of transmission and retransmission units
• Solutions

• Make network drop all fragments of a packet (early packet 
discard in ATM)

• Do path MTU discovery

• Control traffic
• Large percentage of traffic is for control

• Headers, routing messages, DNS, etc.

• Stale or unwanted packets
• Packets that are delayed on long queues
• “Push” data that is never used
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Where to Prevent Collapse?

• Can end hosts prevent problem?
• Yes, but must trust end hosts to do right thing
• E.g., sending host must adjust amount of data it 

puts in the network based on detected 
congestion

• Can routers prevent collapse?
• No, not all forms of collapse
• Doesn’t mean they can’t help 
• Sending accurate congestion signals
• Isolating well-behaved from ill-behaved sources
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Congestion Control and Avoidance

• A mechanism which:
• Uses network resources efficiently
• Preserves fair network resource allocation
• Prevents or avoids collapse

• Congestion collapse is not just a theory
• Has been frequently observed in many 

networks
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Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling
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Objectives

• Simple router behavior 
• Distributedness
• Efficiency: Xknee = Σxi(t)
• Fairness: (Σxi)2/n(Σxi

2)
• Power: (throughputα/delay)
• Convergence: control system must be 

stable
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Basic Control Model

• Let’s assume window-based control
• Reduce window when congestion is 

perceived
• How is congestion signaled?

• Either mark or drop packets
• When is a router congested?

• Drop tail queues – when queue is full
• Average queue length – at some threshold

• Increase window otherwise
• Probe for available bandwidth – how?
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Linear Control

• Many different possibilities for reaction to 
congestion and probing
• Examine simple linear controls
• Window(t + 1) = a + b Window(t)
• Different ai/bi for increase and ad/bd for 

decrease
• Supports various reaction to signals

• Increase/decrease additively
• Increased/decrease multiplicatively
• Which of the four combinations is optimal?
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Phase plots

• Simple way to visualize behavior of 
competing connections over time

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Phase plots

• What are desirable properties?
• What if flows are not equal?

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
Optimal point

Overload

Underutilization
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Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

• Both X1 and X2 increase/decrease by the same 
amount over time
• Additive increase improves fairness and additive 

decrease reduces fairness
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Multiplicative Increase/Decrease

• Both X1 and X2 increase by the same factor 
over time
• Extension from origin – constant fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Distributed Convergence to Efficiency

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

a=0
b=1
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Convergence to Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

xH’
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Convergence to Efficiency & Fairness

xH

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

xH’
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Increase

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2

xL

L -4; 10-7-04© Srinivasan Seshan, 2004 51

Constraints

• Distributed efficiency
• I.e., Σ Window(t+1) > Σ Window(t) during 

increase
• ai > 0 & bi ≥ 1
• Similarly, ad < 0 & bd ≤ 1

• Must never decrease fairness
• a & b’s must be ≥ 0
• ai/bi > 0 and ad/bd ≥ 0

• Full constraints
• ad = 0,  0 ≤ bd < 1, ai > 0 and bi ≥ 1
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What is the Right Choice?
• Constraints limit us to AIMD

• Can have multiplicative term in increase (MAIMD)
• AIMD moves towards optimal point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s 
Allocation 

x2
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Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling
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TCP Congestion Control
• Motivated by ARPANET congestion collapse
• Underlying design principle: packet conservation

• At equilibrium, inject packet into network only when one 
is removed

• Basis for stability of physical systems
• Why was this not working?

• Connection doesn’t reach equilibrium
• Spurious retransmissions
• Resource limitations prevent equilibrium
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TCP Congestion Control - Solutions

• Reaching equilibrium
• Slow start

• Eliminates spurious retransmissions
• Accurate RTO estimation
• Fast retransmit

• Adapting to resource availability
• Congestion avoidance
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TCP Congestion Control

• Changes to TCP motivated by 
ARPANET congestion collapse

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly
• ACK clocking
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AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and 

results in a multiplicative rate decrease 
• Factor of 2

• TCP periodically probes for available bandwidth 
by increasing its rate

Time

Rate
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Implementation Issue
• Operating system timers are very coarse – how to 

pace packets out smoothly?
• Implemented using a congestion window that 

limits how much data can be in the network.
• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of 
outstanding data is less than the congestion 
window.
• The amount of outstanding data is increased on a 

“send” and decreased on “ack”
• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window
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Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase  cwnd by (1 packet)/cwnd

• What is 1 packet? 1 MSS worth of bytes
• After cwnd packets have passed by 

approximately increase of 1 MSS

• Implements AIMD
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Congestion Avoidance Sequence 
Plot

Time

Sequence No

Packets

Acks
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Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back 

Bandwidth

Cut
Congestion

Window
and Rate

L -4; 10-7-04© Srinivasan Seshan, 2004 62

Packet Conservation

• At equilibrium, inject packet into network 
only when one is removed
• Sliding window and not rate controlled
• But still need to avoid sending burst of packets 

would overflow links
• Need to carefully pace out packets
• Helps provide stability 

• Need to eliminate spurious retransmissions
• Accurate RTO estimation
• Better loss recovery techniques (e.g. fast 

retransmit)
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TCP Packet Pacing
• Congestion window helps to “pace” the 

transmission of data packets
• In steady state, a packet is sent when an ack is 

received
• Data transmission remains smooth, once it is smooth
• Self-clocking behavior

Pr

Pb

ArAb

ReceiverSender

As
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Reaching Steady State

• Doing AIMD is fine in steady state but 
slow…

• How does TCP know what is a good initial 
rate to start with?
• Should work both for a CDPD (10s of Kbps or 

less) and for supercomputer links (10 Gbps and 
growing)

• Quick initial phase to help get up to speed 
(slow start)
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Slow Start Packet Pacing

• How do we get this 
clocking behavior to 
start?
• Initialize cwnd = 1
• Upon receipt of every 

ack, cwnd = cwnd + 1
• Implications

• Window actually 
increases to W in RTT * 
log2(W)

• Can overshoot window 
and cause packet loss
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Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7
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Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks
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Return to Slow Start

• If packet is lost we lose our self clocking as 
well
• Need to implement slow-start and congestion 

avoidance together
• When timeout occurs set ssthresh to 0.5w

• If cwnd < ssthresh, use slow start
• Else use congestion avoidance
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TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast 
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur
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How to Change Window

• When a loss occurs have W packets 
outstanding

• New cwnd = 0.5 * cwnd
• How to get to new state?
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Fast Recovery

• Each duplicate ack notifies sender that 
single packet has cleared network

• When < cwnd packets are outstanding
• Allow new packets out with each new duplicate 

acknowledgement
• Behavior

• Sender is idle for some time – waiting for ½
cwnd worth of dupacks

• Transmits at original rate after wait
• Ack clocking rate is same as before loss
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Fast Recovery 

Time

Sequence No
Sent for each dupack after

W/2 dupacks arrive
X
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NewReno Changes

• Send a new packet out for each pair of 
dupacks
• Adapt more gradually to new window

• Will not halve congestion window again until 
recovery is completed 
• Identifies congestion events vs. congestion 

signals
• Initial estimation for ssthresh
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Rate Halving Recovery

Time

Sequence No

Sent after every
other dupack

X
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Delayed Ack Impact

• TCP congestion control triggered by 
acks
• If receive half as many acks window 

grows half as fast
• Slow start with window = 1

• Will trigger delayed ack timer
• First exchange will take at least 200ms
• Start with > 1 initial window

• Bug in BSD, now a “feature”/standard
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Overview

• TCP reliability: timer-driven

• TCP reliability: data-driven

• Congestion sources and collapse

• Congestion control basics

• TCP congestion control

• TCP modeling
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TCP Modeling
• Given the congestion behavior of TCP can we 

predict what type of performance we should get?
• What are the important factors

• Loss rate
• Affects how often window is reduced

• RTT
• Affects increase rate and relates BW to window

• RTO
• Affects performance during loss recovery

• MSS 
• Affects increase rate
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Overall TCP Behavior

Time

Window

• Let’s concentrate on steady state behavior 
with no timeouts and perfect loss recovery
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Simple TCP Model

• Some additional assumptions
• Fixed RTT
• No delayed ACKs

• In steady state, TCP losses packet each 
time window reaches W packets
• Window drops to W/2 packets
• Each RTT window increases by 1 packet W/2 

* RTT before next loss
• BW = MSS * avg window/RTT = MSS * (W + 

W/2)/(2 * RTT) = .75 * MSS * W / RTT
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Simple Loss Model

• What was the loss rate?
• Packets transferred = (.75 W/RTT) * (W/2 * 

RTT) = 3W2/8
• 1 packet lost loss rate = p = 8/3W2

• W = sqrt( 8 / (3 * loss rate))
• BW = .75 * MSS * W / RTT

• BW = MSS / (RTT * sqrt (2/3p))
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TCP Friendliness
• What does it mean to be TCP friendly?

• TCP is not going away
• Any new congestion control must compete with TCP 

flows
• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair share, or it 

will never become popular

• How is this quantified/shown?
• Has evolved into evaluating loss/throughput behavior
• If it shows 1/sqrt(p) behavior it is ok
• But is this really true?
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TCP Performance

• Can TCP saturate a link?
• Congestion control

• Increase utilization until… link becomes 
congested

• React by decreasing window by 50%
• Window is proportional to rate * RTT

• Doesn’t this mean that the network 
oscillates between 50 and 100% utilization?
• Average utilization = 75%??
• No…this is *not* right!
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TCP Congestion Control

Only W packets 
may be outstanding

Rule for adjusting W
• If an ACK is received: W ← W+1/W
• If a packet is lost: W ← W/2

Source Dest

maxW

2
maxW

t

Window size
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Single TCP Flow
Router without buffers
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Summary Unbuffered Link

t

W Minimum window 
for full utilization

• The router can’t fully utilize the link
• If the window is too small, link is not full
• If the link is full, next window increase causes drop
• With no buffer it still achieves 75% utilization
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TCP Performance

• In the real world, router queues play 
important role
• Window is proportional to rate * RTT

• But, RTT changes as well the window
• Window to fill links = propagation RTT * 

bottleneck bandwidth
• If window is larger, packets sit in queue on 

bottleneck link
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TCP Performance
• If we have a large router queue can get 100% 

utilization
• But, router queues can cause large delays

• How big does the queue need to be?
• Windows vary from W W/2

• Must make sure that link is always full
• W/2 > RTT * BW
• W = RTT * BW + Qsize
• Therefore, Qsize > RTT * BW

• Ensures 100% utilization
• Delay?

• Varies between RTT and 2 * RTT
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Single TCP Flow
Router with large enough buffers for full link utilization
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Summary Buffered Link

t

W

Minimum window 
for full utilization

• With sufficient buffering we achieve full link utilization
• The window is always above the critical threshold
• Buffer absorbs changes in window size

• Buffer Size = Height of TCP Sawtooth
• Minimum buffer size needed is 2T*C

• This is the origin of the rule-of-thumb

Buffer
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Example

• 10Gb/s linecard
• Requires 300Mbytes of buffering.
• Read and write 40 byte packet every 32ns.

• Memory technologies
• DRAM: require 4 devices, but too slow. 
• SRAM: require 80 devices, 1kW, $2000.

• Problem gets harder at 40Gb/s
• Hence RLDRAM, FCRAM, etc.
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Rule-of-thumb
• Rule-of-thumb makes sense for one flow
• Typical backbone link has > 20,000 flows
• Does the rule-of-thumb still hold?
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If flows are synchronized

• Aggregate window has same dynamics
• Therefore buffer occupancy has same dynamics
• Rule-of-thumb still holds.

2
maxW

t

max

2
W∑

maxW∑

maxW
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If flows are not synchronized

Probability
Distribution

B

0

Buffer Size

∑W
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Central Limit Theorem

• CLT tells us that the more variables (Congestion 
Windows of Flows) we have, the narrower the Gaussian 
(Fluctuation of sum of windows)

• Width of Gaussian decreases with 
• Buffer size should also decreases with

n
CT

n
BB n ×

=→ = 21

n
1

n
1
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Required buffer size

2T C
n
×

Simulation
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Important Lessons

• How does TCP implement AIMD?
• Sliding window, slow start & ack clocking
• How to maintain ack clocking during loss 

recovery fast recovery

• Modern TCP loss recovery
• Why are timeouts bad?
• How to avoid them? fast retransmit, SACK

• How does TCP fully utilize a link?
• Role of router buffers



25

L -4; 10-7-04© Srinivasan Seshan, 2004 97

Next Lecture

• TCP Vegas/alternative congestion control schemes
• RED
• Fair queuing
• Core-stateless fair queuing/XCP
• Assigned reading

• [BP95] TCP Vegas: End to End Congestion Avoidance on a Global 
Internet

• [FJ93] Random Early Detection Gateways for Congestion 
Avoidance

• [DKS90] Analysis and Simulation of a Fair Queueing Algorithm, 
Internetworking: Research and Experience

• [SSZ98] Core-Stateless Fair Queueing: Achieving Approximately 
Fair Allocations in High Speed Networks

• [KHR02] Congestion Control for High Bandwidth-Delay Product 
Networks

EXTRA SLIDES

The rest of the slides are FYI
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Integrity & Demultiplexing
• Port numbers

• Demultiplex from/to process
• Servers wait on well known ports (/etc/services)

• Checksum
• Is it sufficient to just checksum the packet contents?
• No, need to ensure correct source/destination

• Pseudoheader – portion of IP hdr that are critical
• Checksum covers Pseudoheader, transport hdr, and packet 

body

• UDP provides just integrity and demux
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TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RESET
PUSH
URG
ACK
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TCP Flow Control

• TCP is a sliding window protocol
• For window size n, can send up to n bytes 

without receiving an acknowledgement 
• When the data is acknowledged then the 

window slides forward
• Each packet advertises a window size

• Indicates number of bytes the receiver has 
space for

• Original TCP always sent entire window
• Congestion control now limits this
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Window Flow Control: Send Side

Sent but not acked Not yet sent

window

Next to be sent

Sent and acked
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Acked but not
delivered to user

Not yet
acked

Receive buffer

window

Window Flow Control: Receive Side
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TCP Persist

• What happens if window is 0?
• Receiver updates window when application 

reads data
• What if this update is lost?

• TCP Persist state
• Sender periodically sends 1 byte packets
• Receiver responds with ACK even if it can’t 

store the packet
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Connection Establishment

• A and B must agree on initial sequence 
number selection
• Use 3-way handshake

A B

SYN + Seq A
SYN+ACK-A + Seq B

ACK-B
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Sequence Number Selection

• Why not simply chose 0?
• Must avoid overlap with earlier incarnation
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Connection Setup

CLOSED

SYN
SENT

SYN
RCVD

ESTAB

LISTEN

active OPEN
create TCB
Snd SYN 

create TCB
passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcv SYN

Send FIN
CLOSE

rcv ACK of SYN
Snd ACK
Rcv SYN, ACK

rcv SYN
snd ACK
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Connection Tear-down

• Normal termination
• Allow unilateral close

• TCP must continue to receive data even 
after closing

• Cannot close connection immediately 
• What if a new connection restarts and uses 

same sequence number?
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Tear-down Packet Exchange

Sender Receiver
FIN

FIN-ACK

FIN

FIN-ACK

Data write

Data ack
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Connection Tear-down

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

TIME WAIT

snd FIN
CLOSE

send FIN
CLOSE

rcv ACK of FIN

LAST-ACK

CLOSED

FIN WAIT-2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

rcv ACK of FIN

snd ACK
rcv FIN+ACK
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Detecting Half-open Connections

1. (CRASH)
2. CLOSED
3. SYN-SENT <SEQ=400><CTL=SYN>
4. (!!)              <SEQ=300><ACK=100><CTL=ACK>
5. SYN-SENT <SEQ=100><CTL=RST>
6. SYN-SENT
7. SYN-SENT <SEQ=400><CTL=SYN>

(send 300, receive 100)
ESTABLISHED
(??)
ESTABLISHED
(Abort!!)
CLOSED

TCP BTCP A
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Observed TCP Problems

• Too many small packets
• Silly window syndrome
• Nagel’s algorithm

• Initial sequence number selection
• Amount of state maintained 
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Silly Window Syndrome

• Problem: (Clark, 1982)
• If receiver advertises small increases in the  

receive window then the sender may waste 
time sending lots of small packets

• Solution
• Receiver must not advertise small window 

increases 
• Increase window by min(MSS,RecvBuffer/2)
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Nagel’s Algorithm

• Small packet problem:
• Don’t want to send a 41 byte packet for each 

keystroke
• How long to wait for more data?  

• Solution:
• Allow only one outstanding small (not full sized) 

segment that has not yet been acknowledged
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Why is Selecting ISN Important?

• Suppose machine X selects ISN based on 
predictable sequence

• Fred has .rhosts to allow login to X from Y
• Evil Ed attacks

• Disables host Y – denial of service attack
• Make a bunch of connections to host X
• Determine ISN pattern a guess next ISN
• Fake pkt1: [<src Y><dst X>, guessed ISN]
• Fake pkt2: desired command
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Time Wait Issues

• Web servers not clients close connection 
first
• Established Fin-Waits Time-Wait 

Closed
• Why would this be a problem?

• Time-Wait state lasts for 2 * MSL
• MSL is should be 120 seconds (is often 60s)
• Servers often have order of magnitude more 

connections in Time-Wait
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TCP Extensions

• Implemented using TCP options
• Timestamp
• Protection from sequence number wraparound
• Large windows
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Protection From Wraparound

• Wraparound time vs. Link speed
• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds < MSL!
• 1.2Gbps: 28 seconds

• Use timestamp to distinguish sequence 
number wraparound
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Large Windows
• Delay-bandwidth product for 100ms delay

• 1.5Mbps: 18KB
• 10Mbps: 122KB > max 16bit window
• 45Mbps: 549KB
• 100Mbps: 1.2MB
• 622Mbps: 7.4MB
• 1.2Gbps: 14.8MB

• Scaling factor on advertised window
• Specifies how many bits window must be shifted to the 

left
• Scaling factor exchanged during connection setup
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Maximum Segment Size (MSS)

• Exchanged at connection setup
• Typically pick MTU of local link

• What all does this effect?
• Efficiency
• Congestion control
• Retransmission

• Path MTU discovery
• Why should MTU match MSS?


