Network Measurements

• How is the Internet holding up?
• Assigned reading
 • [Pax97] End-to-End Internet Packet Dynamics

Overview

• Internet measurement

Motivation

• Answers many questions
 • How does the Internet really operate?
 • Is it working efficiently?
 • How will trends affect its operation?
 • How should future protocols be designed?
• Aren’t simulation and analysis enough?
 • We really don’t know what to simulate or analyze
 • Need to understand how Internet is being used!
 • Too difficult to analyze or simulate parts we do understand
Measurement Methodologies

- Active tests – probe the network and see how it responds
 - Must be careful to ensure that your probes only measure desired information (and without bias)
 - Labovitz routing behavior – add and withdraw routes and see how BGP behaves
 - Paxson packet dynamics – perform transfers and record behavior
 - Bolot delay & loss – record behavior of UDP probes

- Passive tests – measure existing behavior
 - Must be careful not to perturb network
 - Labovitz BGP anomalies – record all BGP exchanges
 - Paxson routing behavior – perform traceroute between hosts
 - Leland self-similarity – record Ethernet traffic

Traces Characteristics

 - E.g. tcpdump files and HTTP logs
 - Public ones tend to be old (2+ years)
 - Privacy concerns tend to reduce useful content

- Paxson’s test data
 - Network Probe Daemon (NPD) – performs transfers & traceroutes, records packet traces
 - Approximately 20-40 sites participated in various NPD based studies
 - The number of “paths” tested by NPD framework scaled with (number of hosts)2
 - 20-40 hosts = 400-1600 paths!

Observations – Routing Pathologies

- Observations from traceroute between NPDs
- Routing loops
 - Types – forwarding loops, control information loop (count-to-infinity) and traceroute loop (can be either forwarding loop or route change)
 - Routing protocols should prevent loops from persisting
 - Fall into short-term (< 3hrs) and long-term (> 12 hrs) duration
 - Some loops spanned multiple BGP hops! → seem to be a result of static routes
- Erroneous routing – Rare but saw a US-UK route that went through Israel → can’t really trust where packets may go!

- Route change between traceroutes
 - Associated outages have bimodal duration distribution
 - Perhaps due to the difference in addition/removal of link in routing protocols
 - Temporary outages
 - Traceroute probes (1-2%) experienced > 30sec outages
 - Outage likelihood strongly correlated with time of day/load
 - Most pathologies seem to be getting worse over time
Observations – Routing Stability

- Prevalence – how likely are you to encounter a given route
 - In general, paths have a single primary route
 - For 50% of paths, single route was present 82% of the time
- Persistence – how long does a given route last
 - Hard to measure – what if route changes and changes back between samples?
 - Look at 3 different time scales
 - Seconds/minutes → load-balancing flutter & tightly coupled routers
 - 10’s of Minutes → infrequently observed
 - Hours → 2/3 of all routes, long lived routes typically lasted several days

Observations – Re-ordering

- 12-36% of transfers had re-ordering
- 1-2% of packets were re-ordered
- Very much dependent on path
 - Some sites had large amount of re-ordering
 - Forward and reverse path may have different amounts
- Impact → ordering used to detect loss
 - TCP uses re-order of 3 packets as heuristic
 - Decrease in threshold would cause many “bad” retransmits
 - But would increase retransmit opportunities by 65-70%
 - A combination of delay and lower threshold would be satisfactory though → maybe Vegas would work well!

Observations – Packet Oddities

- Replication
 - Internet does not provide “at most once” delivery
 - Replication occurs rarely
 - Possible causes → link-layer retransmits, misconfigured bridges
- Corruption
 - Checksums on packets are typically weak
 - 16-bit in TCP/UDP → miss 1/64K errors
 - Approx. 1/5000 packets get corrupted
 - 1/3million packets are probably accepted with errors!

Observations – Bottleneck Bandwidth

- Typical technique, packet pair, has several weaknesses
 - Out-of-order delivery → pair likely used different paths
 - Clock resolution → 10msec clock and 512 byte packets limit estimate to 51.2 KBps
 - Changes in BW
 - Multi-channel links → packets are not queued behind each other
- Solution – Packet Bunch Mode (PBM)
 - Send a group of packets and analyze modes of different bunch sizes
Observations – Loss Rates

- Ack losses vs. data losses
 - TCP adapts data transmission to avoid loss
 - No similar effect for acks → Ack losses reflect Internet loss rates more accurately (however, not a major factor in measurements)
- 52% of transfers had no loss (quiescent periods)
- 2.7% loss rate in 12/94 and 5.2% in 11/95
 - Loss rate for “busy” periods = 5.6 & 8.7%
- Losses tend to be very bursty
 - Unconditional loss prob = 2 - 3%
 - Conditional loss prob = 20 - 50%
 - Duration of “outages” vary across many orders of magnitude (pareto distributed)

Observations – TCP Behavior

- Recorded every packet sent to Web server for 1996 Olympics
 - Can re-create outgoing data based on TCP behavior → must use some heuristics to identify timeouts, etc.
- How is TCP used clients and how does TCP recover from losses
 - Lots of small transfers done in parallel

Observations – TCP Behavior

<table>
<thead>
<tr>
<th>Trace Statistic</th>
<th>Value</th>
<th>%Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total connections</td>
<td>1,650,103</td>
<td>100</td>
</tr>
<tr>
<td>With packet reordering</td>
<td>97,036</td>
<td>6</td>
</tr>
<tr>
<td>With rcv window bottleneck</td>
<td>233,906</td>
<td>14</td>
</tr>
<tr>
<td>Total packets</td>
<td>7,821,638</td>
<td>100</td>
</tr>
<tr>
<td>During slow start</td>
<td>6,662,050</td>
<td>85</td>
</tr>
<tr>
<td>Slow start packets lost</td>
<td>354,566</td>
<td>6</td>
</tr>
<tr>
<td>During congestion avoidance</td>
<td>1,159,588</td>
<td>15</td>
</tr>
<tr>
<td>Congestion avoidance loss</td>
<td>82,181</td>
<td>7</td>
</tr>
<tr>
<td>Total retransmissions</td>
<td>857,142</td>
<td>100</td>
</tr>
<tr>
<td>Fast retransmissions</td>
<td>375,306</td>
<td>44</td>
</tr>
<tr>
<td>Slow start following timeout</td>
<td>59,811</td>
<td>7</td>
</tr>
<tr>
<td>Coarse timeouts</td>
<td>422,025</td>
<td>49</td>
</tr>
<tr>
<td>Avoidable with SACK</td>
<td>18,713</td>
<td>4</td>
</tr>
</tbody>
</table>

Observations – Self-Similarity

- Let X be a sequence of values drawn from a distribution
 - X is covariance stationary or wide-sense stationary (WSS) iff:
 - Mean does not change with time
 - Variance does on change with time
 - Autocorrelation is only a function of ?T
- WSS ≠ stationary
 - Stationary requires that all X are drawn from same distribution
 - Basic assumption of paper is that Ethernet bandwidth is WSS
Observations – Self-Similarity

- A self-similar process looks similar across many different time scales
 - Above hours, human behavior has significant effect
 - Poisson processes tend to smooth out
- Suppose that original X’s were replaced by blocked version
 - Replace m consecutive samples of X with a single average value \(\rightarrow X^{(m)} \)
- \(X \) is self-similar if:
 - Variance\((X^{(m)}) \) is slowly decaying as a function of m
 - Autocorrelation of \(X^{(m)} \) is the same as \(X \)

Observations – Self-Similarity

- Variance\((X^{(m)}) \) is slowly decaying as a function of m
 - Implication \(\rightarrow \) process has a heavy tail since tail probabilities do not fall (i.e. large variance)
- Autocorrelation decays slowly
 - Autocorrelation goes with \(k^{-\beta} \) (i.e. hyperbolically)
 - Termed long-range dependence

Observations – Self-Similarity Tests

- Variance-time plots
 - For each block size \(m \) calculate variance
 - Plot variance vs. \(m \) on log-log scale
 - If process is self-similar, fit line and slope will be related to Hurst parameter \(\rightarrow -2 \times (1 - H) \)
- R/S statistic
 - Calculate \(S^2 \), sample variance of \(X_1, \ldots, X_n \)
 - \(R = \text{Range} = \max(0, W_1, W_2, \ldots, W_n) - \min(0, W_1, W_2, \ldots, W_n) \) where \(W_k = X_1 + X_2 + \ldots + X_k - kX_{avg} \)
 - R/S should be proportional to \(n^H \) then it is self-similar

Other Motivations

- Can also measure current state of network to provide status and short-term predictions
- Need on-line real-time analysis of traffic and conditions
- Example systems include IDMAP, Remos, Sonar, SPAND
SPAND Assumptions

- **Geographic Stability**: Performance observed by nearby clients is similar → works within a domain
- **Amount of Sharing**: Multiple clients within domain access same destinations within reasonable time period → strong locality exists
- **Temporal Stability**: Recent measurements are indicative of future performance → true for 10’s of minutes

SPAND Design Choices

- Measurements are *shared*
 - Hosts share performance information by placing it in a per-domain repository
- Measurements are *passive*
 - Application-to-application traffic is used to measure network performance
- Measurements are *application-specific*
 - When possible, measure application response time, not bandwidth, latency, hop count, etc.

SPAND Architecture

Measurement Summary

- Internet is a large and heterogeneous
 - There is no “typical” behavior → each path or region may be very different
 - Protocols must be able to handle this
- Internet changes quickly
 - New applications change the way the network is used
 - Some invariants remain across these changes
Next Lecture: Application Networking

- HTTP
- Adaptive applications
- Assigned reading
 - [BSR99] An Integrated Congestion Management Architecture for Internet Hosts
 - [CT90] Architectural Consideration for a New Generation of Protocols