15-441: Computer Networks - Project 3
Congestion Control

Project 3 Lead TA: Kaushik Lakshminarayanan

Assigned: Thursday, March 31, 2010
Due Date: Friday, Apr 30, 2010

1 Overview

In this assignment, you will implement a BitTorrent-likeefifransfer application. The application will run on top of
UDP, and you will need to implement a reliability and congestontrol protocol (similar to TCP) for the application.
The application will be able to simultaneously downloadati#nt parts, called “chunks”, of a file from different
servers. Please remember to read the complete assignnmetdutenore than onceso that you know exactly what is
being provided and what functionality you are expected th &toject documents, FAQ, and starter files are at:

http://ww. cs. crmu. edu/ ~sri ni/ 15- 441/ S10/ assi gnnent s. ht

The project consists of mandatory componethat will be used for grading, and aptional optimization com-
ponent The group/groups whose application performs the fastedtéinsfers (by selecting good peers from whom to
download,while still performing proper congestion control) will receive both glowing praise from the course staff
and the awe and envy of your peers. On the outside chancéhtbag nhot sufficient motivation, we will also provide
gift certificates to the top two teams, as well as a “secreigffior the best code design.

This is a group project and you must find exactly one partnardik with. Once you have found a partner, email
Kaushik (firsthname@cs.cmu.edu) with the names of the twplpeo your group and your andrew logins. Use441
GROUP” as the subject line. If you can't find a partner start by pogton the bboard.

1.1 Help Sessions, Checkpoints and Deadlines

The timeline for the project is below, including several ckgoints. To help you pace your work, remember that
checkpoints represent a date by which you should easily ¢t@mwpleted the required functionality. Given the timeline,
you can see that this means you should get started now! Tdeddity is explained on the course website.

Date Description
March 31| Assignment handed ouPLEASE START EARLY!
April 2 Recitation: Project Design Overview, Q & A

Apr5 Deadline to inform us about project partner pairs
April 9 Checkpoint : WHOHAS flooding and IHAVE responses
April 9 Recitation: Congestion Control in Project 2

April 13 | Checkpoint 22 Simple Chunk Download with stop-and-wait

April 19 | Checkpiont 3: Sliding window flow-control with reliability

April 23 | Checkpoint 4: Simple Congestion Avoidance, with cwnd = 1 after any loss
April 27 | Early bird deadline for required functionality (10 bonus points) by 11:59 P.M.
April 30 Late deadline with no penalty (also extra credit and competion) by 11:59 P.M.

There are foumandatorycheckpoints. Each checkpoint is worth 10 points.

Original File

Chunks

N
Hash) — }

".torrent" =

Figure 1: Diagram of bittorrent chunking and torrents: &itent takes a large file and breaks it down into separate
chunks which can be downloaded from different “peers”. dsuare identified by a “hash-value”, which is the result
of computing a well-known hash function over the data in thenk. When a client wants to download a file, it first
grabs a “torrent” file, which contains all of the hash valuesthe desired data file. The torrent lets the client know
what chunks to request from other peers in the network.

2 Where to get help

A big part of being a good programmer is learning how to be weseful during the development process. The first
places to look for help are (1) carefully re-reading the gssient, (2) looking at the project 3 website for updates
and the FAQ, (3) scanning previous bulletin board posts,(dhdoogling any standard compiler or script error mes-
sages. If you still have a question AFTER doing this, genguaistions should be posted to the class bulletin board,
academic.cs.15-441we will be happy to help. If you have more specific questi@spécially ones that require us to
look at your code), please drop by office hours.

3 Project Outline

During the course of this project, you will do the following:
e Implement a BitTorrent-like protocol to search for peerd download/upload file parts.
e Implement flow control and congestion control mechanismenture fair and efficient network utilization.

e Implement smart optimizations to get the best possiblesteariime (extra credit).

4 Project specification

4.1 Background

This project is loosely based on the BitTorrent Peer-torPR2P) file transfer protocol. In a traditional file transfer
application, the client knows which server has the file, atls a request to that specific server for the given file. In
many P2P file transfer applications, the actoahtionof the file is unknown, and the file may be present at multiple
locations. The client first sends a query to discover whiclisofnany peers have the file it wants, and then retrieves
the file from one or more of these peers.

While P2P services had already become commonplace, Bitfoimeroduced some new concepts that made it
really popular. Firstly BitTorrent splits the file into déffent “chunks”. Each chunk can be downloaded independently
of the others, and then the entire collection of chunks isgembled into the file. In this assignment, you will be using
a fixed-size chunk of 512 Kbytes.

BitTorrent uses a central “tracker” that tracks which pdexge which chunks of a file. A client begins a download
by first obtaining a “.torrent” file, which lists the informah about each chunk of the file. A chunk is identified by the

cryptographic hash of its contents; after a client has doaad a chunk, it must compute the cryptographic hash to
determine whether it obtained the right chunk or not. Seereid.

To download a particular chunk, the receiving peer obtaiosifthe tracker a list of peers that contain the chunk,
and then directly contacts one of those peers to begin thelded. BitTorrent uses a “rarest-chunk-first” heuristic
where it tries to fetch the rarest chunk first. The peer canrdoad/upload four different chunks in parallel.

You can read more about the BitTorrent protocol details frarhp: / / www. bi t t orrent . or g/ beps/ bep)\
_0003. ht m . Bram Cohen, its originator also wrote a paper on the deségistbns behind BitTorrent. The paper is
available aht t p: / / www. bi ttorrent. org/ bittorrentecon. pdf.

This project departs from real BitTorrent in several ways:

¢ Instead of implementing a tracker server, your peers withdldhe network to find which peers have which
chunks of a file. Each peer will know the identities of everiestpeer in the network; you do not have to
implement routing.

e To simplify set-up and testing, all file data is actually a&se=l from a single “master data file”. Peers are
configured with a file to tell them what chunks from this fileyttfewn” upon startup.

e You do not have to implement BitTorrent’s incentive basecthamism to encourage good uploaders and dis-
courage bad ones.

But the project adds one complexity: BitTorrent obtainsrdtaiusing TCP. Your application will obtain them
usingUDP, and you will have to implement congestion control and telity. It is a good idea to review congestion
control concepts, particularly TCP, from both lecture dmel textbook (Peterson & Davie Section 6.3).

4.2 Programming Guidelines

Your peer must be written in the C programming language, n® @4STL is allowed. You must use UDP for all the
communication for control and data transfer. Your code neostpile and run correctly on andrew linux machines.
Refer to slides from past recitations on designing modubaie¢ editing makefiles, using subversion, and debugging.
As with project 1, your implementation should be singlestigted.

For network programming, you are not allowed to use any ensocket classes, only the standard libsocket and
csapp libraries. We will provide a hashing library, and yoaynuse public code for basic data structures, but not
any code performing higher-level functionality. Thesedglines are similar to project 1, except that you may freely
use any code from your projectl (even if you switched pasihdiowever, all code you do not freshly write for this
assignment must be clearly documented in the README.

4.3 Provided Files
Your starter code includes:
e hupsi m pl - This file emulates a network topology using topo.map (sexi@e7)
e sha. [ch] - The SHA-1 hash generator
e i nput _buffer.[ch] - Handle user input
e debug. [ch] - helpful utilities for debugging output
e bt parse. [ch] - utilities for parsing commandline arguments.
e peer. c - A skeleton peer file. Handles some of the setup and progegsiryou.
e nodes. map - provides the list of peers in the network

e t opo. map - the hidden network topology used by hupsim.pl. This shbelthterpreted only by the hupsim.pl,
your code shouldiot read this file. You may need to modify this file when using hoppl to test the congestion
avoidance part of your program.

e nmake- chunks - program to create new chunk files given an input file thata@mstchunk-id, hash pairs, useful
for creating more larger file download scenarios.

4.4 Terminology

e master-data-file - The input file that contains ALL the datthmnetwork. All nodes will have access to this file,
but a peer should only read the chunks that it “owns”. A peems@a chunk if the chunk id and hash was listed
in that peer’s has-chunk-file, or if the peer has already doaged the chunk since starting up. The second case
only applies if you choose to implement caching as extraitred

e master-chunk-file - A file that lists the chunk IDs and cormyting hashes for the chunks in the master data
file.

e peer-list-file - A file containing list of all the peers in thetwork. For a sample of the peer-list-file, please look
at nodes.map.

e has-chunk-file - A per-node file containing list of chunkstthgarticular node has at startup. However, a peers
will have access to more chunks as they download the chuaksdther peers in the network.

e get-chunk-file - A file containing the list of chunk ids and has a peer wants to download. This filename is
provided by the user when requesting a new download.

e max-downloads - The maximum number of simultaneous coiorectllowed in each direction (download /
upload)

e peer-identity - The identity of the current peer. This sliblbé used by the peer to get its hosthame and port
from peer-list-file

e debug-level - The level of debug statements that should ipéeprout by DPRINTF(). For more information,
please look atlebug. [h, c] .

4.5 How the file transfer works

The code you write should produce an executable file nameat”p&he command line options for the program are :

peer -p <peer-list-file> -c <has-chunk-file> -m <max-downl oads>
-i <peer-identity> -f <master-chunk-file> -d <debug-Ievel >

The peer program listens on standard input for commands ihhemser. The only command is “GEJget-chunk-
file> <output filename-". This instruction from the user should cause your prograragen the specified chunks file
and attempt to download all of the chunks listed in it (you aasume the file names contain no spaces). When your
program finishes downloading the specified file, it shouldtgiGOT <get-chunk-file-" on a line by itself. You do
not have to handle multiple concurrent file requests fromuser. Our test code will not send another GET command
until the first has completed; you're welcome to do whatewar want internally. The format of different files are
given in Section 4.7.

To find hosts to download from, the requesting peer sends a “WA®<list>" request to all other peers, where
<list> is the list of chunk hashes it wants to download. The list gjgscthe SHA-1 hashes of the chunks it wants
to retrieve. The entire list may be too large to fit into a ssngIDP packet. You should assume the maximum packet
size for UDP as 1500 bytes. The peer must split the list intttipite WHOHAS queries if the list is too large for a
single packet. Chunk hashes have a fixed length of 20 bytdse ffle is too large, your client may send out the GET
requests iteratively, waiting for responses to a GET retpieBunks to be downloaded before continuing. For better
performance, your client should send these requests ifigara

Upon receipt of a WHOHAS query, a peer sends back the list oflchit contains using the “IHAVE<list>"
reply. The list again contains the list of hashes for chubkss. Since the request was made to fit into one packet, the
response is guaranteed to fit into a single packet.

The requesting peer looks at all IHAVE replies and decideswiemote peer to fetch each of the chunks from. It
then downloads each chunk individually using “GEEThunk-hask-" requests. Because you are using UDP, you can
think of a “GET” request as combining the function of an apation-layer “GET” requesinda the connection-setup
function of a TCP SYN packet.

When a peer receives a GET request for a chunk it owns, it wilddgack multiple “DATA’ packets to the
requesting peer (see format below) until the chunk specifieitie GET request has been completely transferred.
These DATA packets are subject to congestion control, dsedtin Section 6.2. The peer may not be able to satisfy
the GET request if it is already serving maximum number okotbteers. The peer can ignore the request or queue
them up or notify the requester about its inability to setwe particular request. Sending this notification is optipna
and uses the DENIED code. Each peer can only have 1 simultartmvnload from any other peer in the network,
meaning that the IP address and port in the UDP packet wijuely determine which download a DATA packet
belongs to. Each peer can however have parallel downloadsegach) from other peers.

When a peer receives a DATA packet it sends back an ACK packibietsender to notify that it successfully
received the packet. Receivers should acknowledge all Dgdékets.

4.6 Packet Formats

All the communication between the peers use UDP as the ymagrbrotocol. All packets begin with a common
header:

. Magic Number [2 bytes]
. Version Number [1 byte]
. Packet Type [1 byte]

. Total Packet Length [2 bytes]

1
2
3
4. Header Length [2 bytes]
5
6. Sequence Number [4 bytes]
7

. Acknowledgment Number [4 bytes]

Just like in the previous assignment, all multi-byte intefiglds must be transmitted in network byte order (the
magic number, the lengths, and the sequence/acknowledgmebers). Also, all integers must be unsigned.

The magic number should be 15441, and the version numbefdsheul. Peers should drop packets that do not
have these values. The “Packet Type” field determines wimat &f payload the peer should expect. The codes for
different packet types are given in Table 1. By changing #reder length, the peers can provide custom optimizations
for all the packets (if you choose). Sequence number and dwladgment number are used for congestion control
mechanisms similar to TCP as well as reliable transmission.

If you extend the header length, please begin your extendader with a two-byte “extension ID” field set to your
group’s number, to ensure that you can interoperate cleaitiyother people’s clients. Similarly, if your peer recess
an extended header and the extension ID does not match yamup gumber, just ignore the extensions.

The payload for both WHOHAS and IHAVE contain the number of dhihashes (1 byte), 3 bytes of empty
padding space to keep the chunk 32-bit aligned, and theflisashes (20 bytes each) in them. The format of the
packet is shown in Figure 2(b). The payload of GET packet é&nawore simple: it contains only the chunk hash for
the chunk the client wants to fetch (20 bytes).

Figure 2(c) shows an example DATA packet. DATA and ACK pasldd not have any payload format defined;
normally they should just contain file data. The sequencebmurand acknowledgment number fields in the header
have meaning only in DATA and ACK packets. In this project seguence numbers always start from 1 for a new
“GET connection”. A receiving peer should send an ACK packith acknowledgment number 1 to acknowledge
that is has received the data packet with sequence numberdoaon. Even though there are both a sequence number
and an acknowledgment number fields in the headmr,should not combine DATA and ACK packé® not use a

Packet Type| Code
WHOHAS
IHAVE
GET
DATA
ACK
DENIED

ab~rwdNPEFEO

Table 1: Codes for different packet types.

4 bytes

4 bytes
I 1 ‘ ‘
f 1
15441 1 0 15441 1 3
16
60 16 1016
invalid ”
4 bytes nvald invalid
| |
f 1
2 padding
Magic Version Type
Chunk Hash #1 (20 bytes
Header Len Packet Len COLVES) Chunk Data (1000 bytes)
Seq Num
Chunk Hash #2 (20 bytes)
Ack Num

(a) The basic packet header, with eaclib) A full WHOHAS requestwithtwo (c) A full DATA packet, with seq

header field named. Chunk hashes in the request. Note thatumber 24 and 1000 bytes of data.
both seq num and ack num have ndNote that the ack num has no meaning
meaning in this packet. because data-flow is one-way.

Figure 2: Packet headers.

DATA packet to acknowledge a previous packet and do not satalid a ACK packet. This means that for any DATA
packet the ACK num will be invalid and for any ACK packet theBaum field will be invalid. Invalid fields still take
up space in the packet header, but their value should beadrnyr the peer receiving the packet.

4.7 File Formats
Chunks File:

File: <path to the file which needs sharing>
Chunks:
i d chunk-hash

The master-chunks-filaas above format. The first line specifies the file that neete &hared among the peers.
The peer should only read the chunks it is provided with ingier'shas-chunks-filparameter. All the chunks have
a fixed size of 512KB. If the file size is not a multiple of 512K it will be padded appropriately.

All lines after “Chunks:” contain chunk ids and the corresgimg hash value of the chunk. The hash is the SHA-1
hash of the chunk, represented as a hexadecimal humbell (itoivhave a starting “0x”). The chunk id is a decimal
integer, specifying the offset of the chunk in the masteadié. If the chunk id ig, then the chunk’s content starts at
an offset ofi x 512k bytes into the master data file.

Has Chunk File

This file contains a list of the ids and hashes of the chunkstacpkar peer has. As in the master chunk file, the ids are
in decimal format and hashes are in hexadecimal format.Heosame chunk, the id of the chunk in the has-chunk-file
will be the same as the id of that chunk in the master-churds-fi

i d chunk-hash
i d chunk- hash

Get Chunk File

The format of the file is exactly same as the has-chunk-fileoiitains a list of the ids and hashes the peer wishes to
download. As in the master chunk file, the ids in decimal fdraral hashes are in hexadecimal format. For the same
chunk of data, the id in the get-chunk-file might NOT be the sa@® the id of that chunk in the master-chunks-file.
Rather, the id here refers to the position of the chunk in fleetiat the user wants to save to.

i d chunk- hash
i d chunk- hash

Peer List File
This file contains the list of all peers in the network. Thetfiat of each line is:

<i d> <peer-address> <peer-port>

Theid is a decimal numbempeer-addresshe IP address in dotted decimal format, and plogt is port integer in
decimal. It will be easiest to just run all hosts on differlrgalhost ports.

5 Example

Assume you have two images A.gif and B.gif you want to sharbesg two files are available in the ‘example’
subdirectory of the code. W&trongly suggest that you walk through these steps as you read therdento get a
better understanding of what each file contains (the haskesah this document are not the actual hash values, to
improve readability).

First, create two files whose sizes are multiple of 512K, gisin

tar cf - Agif | dd of=/tnp/A tar bs=512K conv=sync count =2
tar cf - B.gif | dd of=/tnp/B.tar bs=512K conv=sync count =2

With padding, A.tar and B.tar are exactly 1MB big (ie: 2 chahdng).

Let’s run two nodes, one on port 1111 and one on port 2222

Suppose that the SHA-1 hash of the first 512KB of A.tar is OxD# the second 512KB is OxAD. Similarly, for
B.tar the 0-512KB chunk hash is 0x15 and the 512KB-1MB chuagbhs 0x441.

First, do the following:

cat /tnp/Atar /tnp/B.tar > /tnmp/C. tar
make-chunks /tmp/C. tar > /tnp/C. chunks
make- chunks /tnp/ A tar > /tnp/ A chunks
make- chunks /tnp/B.tar > /tnp/B. chunks

This will create themaster data filat /tmp/C.tar. The contents of C.chunks will be:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad
2 0000000000000000000000000000000000000015
3 0000000000000000000000000000000000000441

Recall that ids are in decimal format, while the hash is inddecimal.The contents of A.chunks will be:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad

The contents of B.chunks will be:

0 0000000000000000000000000000000000000015
1 0000000000000000000000000000000000000441

Next, edit the C.chunks file to add two lines and save this as6terchunks:

File: /tnp/C tar

Chunks:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad
2 0000000000000000000000000000000000000015
3 0000000000000000000000000000000000000441

Next create a peer file called /tmp/nodes.map It should aonta

1127.0.0.1 1111
2 127.0.0.1 2222

Finally, you need to create files that describe the initiateat of each node. Let node 1 have all of file A.tar and none
of file B.tar. Let node 2 have all of file B.tar and none of A.tar.
Create a file /tmp/A.haschunks whose contents are:

0 00000000000000000000000000000000000000de
1 00000000000000000000000000000000000000ad

Create a file /tmp/B.haschunks whose contents are:

2 0000000000000000000000000000000000000015
3 0000000000000000000000000000000000000441

Note that the ids in the above two files are obtained from C.malsterks, which in turn refers to the offset in the
master data file.

Now, to run node 1, type:
peer -p /tnp/ nodes.map -c /tnp/ A haschunks -f /tnp/C. masterchunks -m4 -i 1

and to run node 2, type in a different terminal:
peer -p /tnp/ nodes.map -c /tnp/B. haschunks -f /tnp/C masterchunks -m4 -i 2

After the peer for node 1 starts, you can ty@eT /t np/ B. chunks /tnp/ newB. t ar. This command tells
your peer to fetch all chunks listed in /tmp/B.chunks ancesine downloaded data chunks to the file /tmp/newB.tar
ordered by the id values in /tmp/B.chunks.

Here is an example of what your code should to do (note thasages are displayed here in plain text, but the
actual packet content will be binary). Node 1 should sehd WHOHAS 2 0000...015 0000..00441 ' (for
the 2 chunks that are named 00...15 and 00.441) to all the peeodes.map. It will get one IHAVE reply from node
2 that has ‘ | HAVE 2 0000...015 0000..00441' ' . Node 1 should then send a message to Node 2 saying
‘* GET 0000...015" " . Node 2 starts sending Data packets as limited by flow/cdingesontrol and Node 1
sends ACK packets as it gets them. After the GET completes§iL2KB has been transferred), Node 1 should then
send a message to Node 2 sayindg=ET 0000. .. 00441’ and should perform this transfer as well.

At the end, you should have new file called /tmp/newB.tar. Bkesure you got it right, you can compare this file
with /tmp/B.tar to make sure they are identical (use the tdiff” utility).

In summary, there are basically three chunk descriptiomé&is (get-chunks, has-chunks and master-chunks) and
a peer list format.

6 Project Tasks

This section details the requirements of the assignmenis Aigh-level outline roughly mirrors the order in which
you should implement functionality.

6.1 Task1-100% Reliability & Sliding Window

The first task is to implement a 100% reliable protocol for filensfer (ie: DATA packets) between two peers with

a simple flow-control protocol. Non-Data traffic (WHOHAS, IME, GET packets) does not have to be transmitted
reliably or with flow-control. The peer should be able to sbahe network for available chunks and download them
from the peers that have them. All different parts of the filewdd be collected at the requesting peer and their validity
should be ensured before considering the chunks as rece¥eedcan check the validity of a downloaded chunk by

computing its SHA-1 hash and comparing it against the sgectfhunk hash.

To start the the project, use a fixed-size windovBgfackets. The sender should not send packets that fall out of
the window. The Figure 3 shows the sliding windows for botesi The sender slides the window forward when it
gets an ACK for a higher packet number. There is a sequenceeruassociated with each packet and the following
constraints are valid for the sender (hint: your peers \iki#tlly want to keep state very similar to that shown here):

Sending side

o LastPacketAcked < LastPacketSent

e LastPacketSent < LastPacketAvailable

INote that TCP uses a byte-based sliding window, but youeptajill use a packet-based sliding window. It's a bit simgtedo it by packet.
Also, unlike TCP, you only have a sender window, meaning thatlaw size does not need to be communicated in the packet header

astPacketAvailable

Receiver

LastPacketRead

f f

LastPacketAcked LastPacketSent NextPacketExpected

LastPacketRcvd

Figure 3: Sliding Window

o LastPacketAvailable — LastPacket Acked < WindowSize

e packet betweehast Packet Acked and Last Packet Available must be “buffered” — you can either implement
this by buffering the packets or by being able to regeneramtfrom the datafile.

When the sender sends a data packet it starts a timer for itett waits for a fixed amount of time to get the ac-
knowledgment for the packet. Whenever the receiver getskepasends an acknowledgment fSext Packet Expected—
1. That is, upon receiving a packet with sequence number =eBretply would be “ACK 8", but only if all packets
with sequence numbers less than 8 have already been rece&tvese are called cumulative acknowledgements. The
sender has two ways to know if the packets it sent did not réesheceiver: either a time-out occurred, or the sender
received “duplicate ACKs.”

¢ If the sender sent a packet and did not receive an acknowledigior it before the timer for the packet expired,
it resends the packet.

¢ If the sender sent a packet and received duplicate ackngwlenlts, it knows that the next expected packet (at
least) was lost. To avoid confusion from re-ordering, a semounts a packet lost only after 3 duplicate ACKs
in arow.

If the requesting client receives a IHAVE from a host, andithieshould send a GET to that same host, set a timer
to retransmit the GET after some period of time (less thancersds). You should have reasonable mechanisms in
your client to recognize when successive timeouts of DATAG&ET traffic indicates that a host has likely crashed.
Your client should then try to download the file from anotheep(reflooding the WHOHAS is fine).

We will test your your basic functionality using a networlptilogy similar to Figure 4(a). A more complicated
topology like Figure 4(b) will be used to test for concurreltwnloads and robustness to crashes, as well as for
measuring performance in the competition. As suggestetidoghieckpoints, you can first code-up basic flow control
with a completely loss free virtual network to simplify démement.

6.2 Task 2 - Congestion control

You should implement a TCP-like congestion control aldoriton top of UDP for all DATA traffic (you don’t need
congestion control for WHOHAS, IHAVE, and GET packets). T&GRsian end-to-end congestion control mechanism.

10

File File

§File

A B A B

(a) A simple scenario that tests most of the required funclipna (b) An example topology for the speed competition. Peers D and

Peer D has all the chunks in the file. Peer Awants to gettheditaf E between them have the entire file. Peers A, B want to get the

D. In this problem, the file should reach the Peer A, 100% rsfiab complete file. The peers should recognize that A and B are close

Peers themselves should not drop valid packets. together and transfer more chunks between them rather thtingye
them from D and E. One test might be to first transfer the file to A,
pause, and then have B request the file, to test if A cachedefamnti
offers it. A tougher test might have them request the file atlaimi
times.

Figure 4: Test topologies

Broadly speaking, the idea of TCP congestion control is arhesource to determine how much capacity is available
in the network, so it knows how many packets it can safely Haveansit” at the same time. Once a given source has
this many packets in transit, it uses the arrival of an ACK aiaal that one of its packets has left the network, and it
is therefore safe to insert a new packet into the networkauttadding to the level of congestion. By using ACKs to
pace the transmission of packets, TCP is said to be “setkaig.”

TCP Congestion Control mechanism consists of the algostbf$low Start, Congestion Avoidance Fast Re-
transmit and Fast Recovery You can read more about these mechanisms in Peterson & Bati®on 6.3 .

In the first part of the project, your window size was fixed ab8lgets. The task of this second part is to dynamically
determine the ideal window size. When a new connection ibksiti@d with a host on another network, the window
is initialized to one packet. Each time an ACK is receive@, Window is increased by one packet. This process is
calledSlow Start. The sender keeps increasing the window size until the éisstis detected or until the window size
reaches the valussthresh(slow-start threshold), after which it enters Congestiamoidance mode (see below). For
a new connection the ssthresh is set to a very big value—wsdl64 packets. If a packet is lost in slow start, the
sender sets ssthreshiaz (currentwindowsize/2,2), in case the client returns to slow start again during theesam
connection.

Congestion Avoidanceslowly increases the congestion window and backs off at teedign of trouble. In this
mode when new data is acknowledged by the other end, the wis@® increases, but the increase is slower than
the Slow Start mode. The increase in window size should beoat ome packet each round-trip time (regardless how
many ACKs are received in that RTT). This is in contrast tonSitart where the window size is incremented for
each ACK. Recall that when the sender rece®ehRiplicate ACK packets, you should assume that the packéat wit
sequence number = acknowledgment number + 1 was lost, eaeimf out has not occurred. This process is called
Fast Retransmit

Similar to Slow Start, in Congestion Avoidance if there i®ad in the network (resulting from either a time out, or
duplicate acks), ssthresh is settax(windowsize/2,2). The window size is then set to 1 and the Slow Start process
starts again.

11

The last mechanism is Fast Recovergu do not need to implement Fast Recovery for the prdpecit would be
a good trick to implement for the competition phase of thégassent! You can read up more about these mechanisms
from Section 6.3.3 of Peterson & Davie.

6.2.1 Graphing Window Size

Your program must generate a simple output file (named pnabipeer.txt) showing how your window size varies over
time for each chunk download. This will help you debug and yesir code, and it will also help us grade your code
and any extra-credit you implement. The output format ispd@and will work with many Unix graphing programs
like gnuplot Every time a window size changes, you should print the IDhaf tonnection (choose something that
will be unique for the duration of the flow), the time in mikisonds since your program began, and the new window
size. Each column should be separated by a tab. For example:

fl 45 2
fl 60 3
f1l 78 4
f2 84 2
fl 92 5
f2 97 3

You can get a graph input file for a single chunk download ugirggp. For example:

grep f1 problenk-peer.txt > f1l.dat

You can then rurgnuploton any andrew machine, which will give you a gnuplot promp. dfaw a plot of the file
above, use the command:

plot "fl.dat" using 2:3 title "flow 1’ with lines

For more information about how to use gnuplot, b¢é¢ p: / / ww. duke. edu/ ~hpgavi n/ gnupl ot . ht m .

6.3 Task 3 - Optimizations: Intelligent Peer Selection and @ching

Extra Credit / Competition Section

For this section, we will measure how well you can optimize fipeed with which files are transferred across
different network topologies. We will keep different chunéf the file at various peers, and then make a number of
other peers fetch the files. You should use some heuristicatbbalance across different peers, fetch chunks from a
peer having more throughput than others, etc. For exampleeifrigure 4(b) the peer A and B could fetch different
chunks from D,E and then they can share those chunks betlvears¢lves. Since A and B are close together, they
will have much better throughput than getting the chunkedaliy from D and E.

To test this we will distribute the file into different nodesdathen sum the time taken to collect the file at each
node. There will be a competition across the class and thgpdgooups taking the least time will get maximum grade
(and prizes!). Some things to think about:

e Having peers cache the entries they have downloaded andtioffim to others is a simple way to have more
peers to choose among.

Fast Recovery will help you make better use of the netwotksliwhile still being TCP friendly.

Some nodes have faster links connecting them than do others

Available bandwidth may change

A peer node may go away. You should quickly recognized thissamitch to any other peer who has this same
block.

12

7 Spiffy: Simulating Networks with Loss & Congestion

To test your system, you will need more interesting netwdheat can have loss, delay, and many nodes causing
congestion. To help you with this, we created a simple ndtveimulator called “Spiffy” which runs completely
on your local machine. The simulator is implementedhioypsi m pl , which creates a series of links with limited
bandwidth and queue sized between nodes specified by thefile. map (this allows you to test congestion control).
To send packets on your virtual network, change your sepgigtem calls to spiffsendto(). spiffysendto() tags
each packet with the id of the sender, then sends it to thespexified bySPI FFY_ROUTER environment variable.
hupsi m pl listens on that port (which needs to be specified when runmipgim.pl), and depending on the identity
of the sender, it will route the packet through the networbcsfied byt opo. nmap and to the correct destination. You
hand spiffysendto() the exact same packet that you would hand to theatddDP sendt o() call. All packets
should be sent using spiffy and spif§endto().

7.1 hupsim.pl
hupsi m pl has four parameters which you must set.
hupsim pl -m <topology file> -n <nodes file> -p <listen port> -v <verbosity>

e <topology file>: This is the file containing the configuration of the netwanlatt hupsim.pl will create. An
example is given to you a0po. map. The ids in the file should match the ids in th@odes file-. The format
is:

src dst bw del ay queue-si ze

The bw is the bandwidth of the link in bits per second. Theyladhe delay in milliseconds. The queue-size is
in packets. Your code iINOT allowed to read this file. If you need values for network cltgestics like RTT,
you must infer them from network behavior.

e <nodes file-: This is the file that contains configuration information &rnodes in the network. An example
is given to you amodes. nmap.

e <listen port>: This is the port thahupsi m pl will listen to. Therefore, this port should be DIFFERENT tha
the ports used by the nodes in the network.

e <verbosity>: How much debugging messages you want to see fiagsi m pl . This should be an integer
from 1-4. Higher value means more debugging output.

7.2 Spiffy Example

We have created a sample server and client which uses spifiiass messages around as a simple example. The
server.c and client.c files are available on the project webs

7.2.1 To make:

gcc -c spiffy.c -o spiffy.o

gcc server.c spiffy.o -o server

gcc client.c spiffy.o -o client

7.2.2 Usage:

usage: ./server <node id> <port>
usage: ./client <nmy node id> <ny port> <to port> <nagi ¢ nunber>

Since server and client use spiffy, you must specifythede i d>and<port >to matchnodes. map. <magic
number> is a number we put into the packet header and the server witlghie magic number of the packet it receives.

13

7.2.3 Example run:
This example assumes you did not modify nodes.map or tomthad was given.

setenv SPlI FFY_ROUTER 127.0. 0. 1: 12345

./hupsimpl -mtopo.nap -n nodes.map -p 12345 -v 0 &
./server 1 48001 &

./client 2 48002 48001 123

The client will print
Sent MAD C. 123
and the server will print

MAG C 123

8 Grading

This information is subject to change, but will give you aligvel view of how points will be allocated when grading
this assignment. Notice that many of the points are for bfilgidransmission functionality and simple congestion
control. Make sure these work well before moving to more adea functionality or worrying about corner-cases.

e Search for and reliably retrieve files [40 points]: the peer program should be able to search for chunks and
request them from the remote peers. We will test if the oufppeitis exactly the same as the file peers are
sharing. Note, in addition to implementing WHOHAS, IHAVE,(aGET, this section requires reliability to
handle packet loss.

e Basic congestion control [20 points]:The peer should be able to do the basic congestion contrahpiet
menting the basic “Slow Start” and “Congestion Avoidanagidtionality for common cases.

e Support and Utilize Concurrent Transfers [30 points]: The peer should be able to send and retrieve content
from more than one node simultaneously (note: this amesnply threads!). Your peers should simultaneously
take advantage of all nodes that have useful data, insteauingly downloading a chunk from one host at a
time.

e Congestion control corner cases [20 points]:The congestion control should be robust. It must handlesssu
like lost ACKs, multiple losses, out of order packets, etddaionally, it should have Fast Retransmit. We will
stress test your code and look for tricky corner cases.

e Robustness: [10 points]
1. Peer crashes Your implementation should be robust to crashing peerd,should attempt to download
interrupted chunks from other peers.
2. General robustness Your peer should be resilient to peers that send corrugt, deat.

Note: While robustness is important, do not spend so much winreying about corner cases that you do not
complete the main functionality!

e Style [15 points]: Well-structured, well documented, clean code, with wefirted interfaces between com-
ponents. Appropriate use of comments, clearly identifiedatsdes, constants, function names, etc. Use of
provided debugging functions using different “debug lev&lithin the code.

e Selective Acknowledgements [10 points, extra credit]:Implement SACK for better congestion recovery. In
SACK, in addition to sending the cumulative acknowledgnfenall the packets received so far, the receiver
sends the list of packets it has in its sliding window buff€his provides the sender more information about
which packets were lost in transmission. SACK is descrine@fC 2018.

14

e Highly Efficient Downloads [up to 20 points, extra credit] You should implement heuristics and protocol
techniques that will help your peers transfer files fasteeasonable scenarios and topologies. We will measure
the average download speed for multiple uploading and pleltiownloading peers at the same time. For
example, peers may determine optimal peers to download (irmstead of choosing randomly), and update the
optimal peers list on the fly. Other strategies could inclfad failure detection and pre-fetching blocks. Points
will be awarded only if you document your mechanisms in tteglree, and provide graphs and reproducible test
cases that show your optimizations providing benefit comgéw the basic implementation.

In addition to these points, we have assigned 40 points for éhtwo graded checkpoints.

Checkpoint

Deadline

Description

Checkpoint 1 [10 points]

April 9

You must be able to generate WHOHAS queries and corre
respond (if needed) with an IHAVE for a simple configurati
of two hosts. You can assume that there is no loss in the
network.

ctly

D

Checkpoint 2 [10 points]

April 13

You must be able to send a GET request and download ar
tire chunk from another peer within a simple two host netwq
Use a simple stop-and-wait protocol where hosts send aes
packet, and wait for an ACK before sending anoth&gain,
assume no network loss.

1 en-
rk

ngl

Checkpoint 3 [10 points]

April 19

You must implement sliding window flow control with a wirn
dow size of 8 packets. You must also implement timeouts
retransmission for reliable delivery. Use the spiffy rautetest
your network with loss.

and

Checkpoint 4 [10 points]

April 23

Implement simple congestion avoidance. Start the winddw
at size one, and increase the window one packet for every
dow of data that is acked without a loss. After any loss, red
the window to one packet, and begin again.

of
win-
uc

Early bird deadline [10 extra pointg

] April 27

If you turn in your project by this date, you will receive a husn
of 10 extra points. This deadline applies only to the reqli
functionality (ie: the ‘final’ svn tag). Extra credit and cen
petition submissions may be submitted up to the late dead
without sacrificing the early-bird bonus.

re
N
lin

Late deadline

Apr 30

If you turn in your project by this date, you will not receiveya
penalty. Regular late penalty of 10% per day will be dedug
if you turn in your project after this date. Extra credit araire
petition tags must be submitted by this deadline to count.

ted

9 Handin

As in projects 1 and 2, code submission for checkpoints aeditial deadline will be done through your subversion
repositories. You will receive an email with your Team#, $er#, and associated password soon after the assignment
is posted. You can check out your subversion repository thighfollowing command where you must change your

Team# to “Team1” for instance:

svn co https://moo.cmcl.cs.cmu.edu/441-s10/svn/RBjeam# — username andrew-id

The grader will check directories in your repository for dirgg, which can be created with asvh copy.

e Checkpoint - YOUR_REPOSITORY/tags/checkpointX

e Final Handin— YOUR_REPOSITORY/tags/final

e Contest Handin (optional} YOUR_REPOSITORY/tags/contest

15

e Extra Credit (optional)- YOUR_REPOSITORY/tags/extracredit

For checkpoints, you will be expected to have a working Madéeéind whatever source needed to compile a working
binary. Checkpoints that do not compile will NOT be graded. Any extra credit functionality should be handed in
using the ‘extracredit’ tag or the 'contest tag’ (indicateyour readme). The “final” tag should contain the following
files that implement all required functionality:

o Makefile — Make sure all the variables and paths are set abyri®ach that your program compiles in the hand-in
directory. Makefile should build the executable “peer” thais on the andrew machines.

e All of your source code files.

e readme.txt: File containing a thorough description of yodesign and implementation. If you use any additional
packet headers, please document them here. Include dotatioerof your test cases, any known bugs, and
a sample output of your problem2-peer.txt. Also, pleadealiy extra credit parts that you have implemented
here, as well as test-cases and graphs you committed to dénaierthe value of your optimizations.

10 How to succeed in this assignment

Some tips that will help you succeed with this assignmemst Hbok back at past recitation slides regarding concepts
like code design, scripting, compilation, debugging andiom control. You should also consider:

e Start early! We cannot stress how important it is to start early in a ptojgavill give you more time to think
about the problems, discuss with your colleagues, and asgtigms on bulletinboard. You will be busy with
lots of other work around the end of the semester, so do whatga to lighten to the load now!

e Check the bboards and FAQ religiousgven before you run into a problem! Seeing questions and issues
raised by other groups can help you anticipate and avoichgahie same problerneforeyou waste your own
time on it.

e Get help from course staff. Come to office hours, ask for fitations on the bulletin board. The earlier you
ask for help, the more time we will have to help you. If you aiftate a major problem (partner, code, etc...)
contact well in advance of the next checkpoint.

e Modularize: Split the problem into different modules. Tackle one probiat a time and build on functionality
only once it is completely solid and tested. This reducestimaber of places you have to search to find the
source of a bug. Define the interfaces between the moduledalps you and your partner make progress in
parallel.

e Write Unit Tests: Code often has mistakes that are easy to spot when you aréngak small units. Write
small “main” function to test drive a very specific part of tede and see if that works properly. For small stuff,
you can conditionally compile these tests in the same filehiithvyou have defined them:

#i f TESTI NG
int main() {
test _foo();
}
#endi f
and compile the code in a makefile that includes:

TESTDEFS="- DTESTI NG=1"

foo test.o: foo.c Makefile

16

$(CC) $(TESTDEFS) -c foo.c -0 $@

foo test: foo test.o
$(CC) foo test.o -0 $@

Or you can write separate “te&to.c” files that use the functions in the foo file. The advgetto this is that it
also enforces better modularization—your hash table goeashtable.c, your hashtable tests infesshtable.c,
and so on.

e Know about TCP: Knowing TCP'’s congestion control mechanism will help youalep that part of the project.

e Comment your code. Writing documentation is not a waste of tithmakes the code more readable when you
have come back to it later, and is a good way to communicatethoughts to your partner (but don’t comment
the obvious— simple code speaks for itself)

GOOD LUCK (and get started) !!!

17

