BitTorrent Optimization Techniques

(from various online sources)

Announcement

- No recitation next week!
- Final review session
 - Next Sunday (5/2) 5-7pm, GHC 4215
 - Let us know what you want at http://www.doodle.com/6qvsnubhmam2zkxp
 - More specifics will be announced on the course webpage.

Announcement (2)

- TA Evaluations!
 - Your comments / feedbacks are welcomed
 - Any reasonable criticism
 - Anything you liked or didn't like
 - Anything you would like to do / see
 - Helps us improve the recitations and our teaching style!

Evaluation links

• 441 A Kaushik Lakshminarayanan http://www.surveymonkey.com/s/3WJKHTM

441 B Rui Meireles
 http://www.surveymonkey.com/s/3WQSLXV

441 C Daegun Won
 http://www.surveymonkey.com/s/3WSD2VW

Before we start

- Everything we discuss here is about BitTorrent
- Not everything might be useful for the project
 - We'd like to make it your work to figure it out
 - It wouldn't be hard ☺

Two Important Aspects

- Peer selection
 - How to choose other peers to exchange data with
- Chunk selection
 - How to choose / prioritize chunks to download

Peer selection

- Employs a 'Tit-for-Tat' strategy
 - 1. Unless provoked, the agent will always cooperate
 - 2. If provoked, the agent will retaliate
 - 3. The agent is quick to forgive
 - 4. The agent must have a good chance of competing against the opponent more than once.
- Called choking algorithm

Good choking algorithm

- Caps the number of simultaneous uploads
- Avoids choking/ unchoking too quickly
- Reciprocate to peers who
 - let the peer download
 - try to use unused peers once in a while (get out of local maxima)

More specificially...

- Peer A chokes Peer B if it decides not to upload to B
 - Choking = temporary refusal to upload
- Each peer (A) unchokes at most 4 peers that have chunks that A doesn't have
 - 3 peers with fastest upload rate (to A)
 - 1 randomly chosen peers
 - Called 'Optimistic Unchoking'

Optimistic Unchoking

- Finds potentially faster peers
- Allow new peers to receive their first piece
- Helps out 'snubbed' users
 - Snubbed users = Choked by all its peers

Chunk Selection Strategies

Random First Piece

• Rarest First

Endgame Mode

Chunk Overlaps

- Small overlap
 - Every pair can exchange something
 - Better utilization of bandwidth

- Big overlap
 - Only a few peers are very 'valuable'
 - Less utilization of bandwidth

What do we want?

• Ultimately, we want to maximize the total transfer rate of all simultaneous transfers

- It would be nice if every pair has something to exchange
 - So that we can utilize most of the possible end-to-end connections

What does it have to do with chunk selection?

- If something is ...
 - Too popular
 - So much supply but not many looking for it
 - Too rare
 - So much demand but not many having it
- Then it is much less likely to utilize all end-to-end connections

Maximizing Bandwidth Utilization

- Keep all chunks as evenly popular as possible
 - So that we can maximize the number of simultaneous transfers

Prioritizing algorithm should aim towards uniform distribution!

Chunk Selection Strategies

Random First Piece

Rarest First

Endgame Mode

Random First Piece

- Initially, the peer has nothing
 - Important to have some pieces to reciprocate for the choke algorithm.
- Need something ASAP
 - Randomly chosen chunks are likely to be more replicated
 - Can download them faster
 - Then the peer can upload something
- First four piece, then switch to Rarest First

Rarest First

- Look at all chunks at all peers
- Request the 'rarest' piece
 - Owned by fewest peers
- Yes, aim towards UNIFORM DISTRIBUTION!
- What if the original seeder leaves before no one downloads the whole file?
 - Oh no!

Rarest First

- What if the original seeder leaves before no one downloads the whole file?
 - This policy increases the likelihood that everything is still available!

Endgame Mode

- Happens near the end
 - Request the missing blocks to everyone.
 - Cancel pending requests when the chunk is downloaded
- A bit wasteful, but...
 - Speeds up the completion
 - Not too much waste in practice
 - Prevents slow completion due to a single peer with slow transfer rate

Anything else you can do?

There are more things you can improve...

Other things you can do

- You can easily improve your congestionavoidance algorithm
 - Check out other algorithms such as TCP new-Reno(highly recommended)
- The network topology might be not totally random
 - May have a number of clusters and so on...
- And of course, look up for more on the web!

Sources

- http://www.rasterbar.com/products/ libtorrent/bittorrent.pdf
- http://www.ict.kth.se/courses/ID2210/ lectures/Lecture08-BitTorrent.pdf
 - If the above doesn't work, try

http://docs.google.com/viewer?a=v&q=cache:tW513GkEkXkJ:www.ict.kth.se/courses/ID2210/lectures/Lecture08-BitTorrent.pdf+bittorrent+lecture+pdf&hl=en&gl=us&pid=bl&srcid=ADGEESgjwWMdTDIEQMWa6wRklCax3kOIhy4GKlRk-rlhFlhViP6x5dGyDsIkSlsQDkv6lquNlMycLDED-

VlsocwV1i9k1AGftgzXIOgYbp7IozD2xTcR3WtLlN7Ha9j3o67o7Y5TL_RF&sig=AHIEtbSh2BXqAKN8ck4kEj-p6yg-J_DcTA

- http://www.cs.cornell.edu/Courses/ cs514/2008sp/bittorrent.pdf
- http://conferences.sigcomm.org/imc/2006/ papers/p20-legout.pdf