Project 3
Flow and congestion control

Context — Project 3

* Bit torrent-like file transfer app

— Use UDP to understand the challenges in transport
protocol design and implementation

* Checkpoints

— #1: Generate WHOHAS queries and IHAVE replies
(due today!)

— #2: Download a chunk using stop and wait
— #3: Add flow control
— #4: Add congestion control

Why do we need flow control

e Stop and wait

— Don’t transmit a new Pkt o
packet until you get an o
Q
ACK vdl\
* Limited performance Pkt o
— 1 packet per RTT cK 1
| pokt—

Sliding window - idea

* Enough in-flight packets to “hide” the RTT
* Have a buffer of packets on each side

— Advance window when sender and receiver agree
packets at the beginning have been received

* Common case
— Receiver: send cumulative ACK, slide window
— Sender: slide window, send next packet

Sliding window - visualization

Sender

Receiver

Max ACK received

& 11 L [o

Sender window

Next segnum

..

Sent & Acked Sent Not Acked

OK to Send Not Usable

Next expected Max acceptable

) }

-HIRROUOUODHU

Receiver window

...

I Received & Acked Acceptable Packet

Not Usable

Sliding window — reliability

* Lost packet (with cumulative ACKs)

— When detecting a missing packet, the receiver
sends an ACK with the sequence number of the
last correctly ordered packet

— |f the sender timeouts while waiting for an ACK, it
will retransmit

 Accommodating out of order packets

— The sender waits for 3 duplicate ACKs before
retransmitting

Sliding window — implementation

* Sender keeps 3 pointers
— LastPacketAcked, LastPacketSent, LastPacketAvailable

* Ensure invariants
— LastPacketAcked <= LastPacketSent
— LastPacketSent <= LastPacketAvailable
— LastPacketAvailable-LastPacketAcked <= WindowSize
e Simplify by ignoring receiver issues: he can always
process whatever he gets

Sliding window — testing

* Use assert statements to ensure invariants
* [nject some losses to test loss behavior

* Write time-stamped packet sequence
numbers and ACKs to a file and plot them

Sliding window — testing fast retrans

e Retransmission
000

Sequence No Duplicate Acks

cocoommEEERNEEBEX
0000000 EEEEEEEEEHN

B Packets
@ Acks

Time

Congestion control

* Adapt to the network conditions by changing
your window size

* Losses assumed to be due to congestion, so
throttle back the sender when you see one

* Implement:
— Slow start

— Congestion Avoidance
— Fast retransmit

Slow start

e Start with window of size 1 (SW=1) and define
the slow start threshold to be 64 (ssthresh=64)
* Now, upon:
— ACK received: SW++

— Loss detected: ssthresh = max(SW/2,2), SW=1
— SW = ssthresh: move into congestion avoidance

Congestion avoidance

 Upon ACK received:

— SW+=(1/SW) (increases by ~1 every RTT)
* Upon loss detected:

— ssthresh = max(SW/2,2), SW=1

— Revert back to slow start

* Detecting losses
— Retransmission timeout
— 3 duplicate ACKs received (fast retransmit)

Estimating RTT — Karn’s algorithm

 Estimated RTT (ERRT), based on the observed
RTT (ORTT)
— ERTT (i+1) = a * ERTT(i) + (1-a) * ORTT (i)
— a typically =0.875

e Retransmit timer set to 2 * ERTT, increase backoff
on retransmission

* |lgnore any ORTTs from packets with
retransmissions — prevents situations where you

are stuck with a erroneously low RTT (http://
www.opalsoft.net/qos/TCP-10.htm)

Congestion avoidance - testing

Plot the window size as a function of time for a given flow

Congestion
Window

Cut
Packet loss Congestion Grabbing
+ retransmit Window back

and Rate Bandwidth

Congestion avoidance - testing

Write time-stamped sequence nos. and ACKS

|
|
a
a
g
|
m Window size
E oS increases by 1 every
5 S RTT.
Sequence No I
a o
B o
g o
g o
a o
Bl Packets s
@ Acks
Time

Fast recovery (optional)

* When a loss is detected, don’t go back to slow
start, leverage the outstanding packets:
— Wait to receive SW/2 ACKs

— Set SW = max(SW/2,2) and resume congestion
avoidance

Fast recovery (optional)

y mo
H O
= o
= o
H o
a
|
;
s Sent for each dupack after
Sequence No _= W/2 dupacks arrive
|
)4 [
| (o0 0000000]
| o
| o
| o
| o
| (0]
| o
o
()
Bl Packets °
@ Acks >
Time

Selective ACKs (optional)

* |nstead of having the sequence no. of the
packet you last received in order

— send a bitmask of all received packets

* Enables faster retransmissions

Without selective ACKs

Sequence No

B Packets
@ Acks

OCOQIIIIIII)(

0000000 mExpmimEm

Now what? - timeout

Time

With selective ACKs (optional)

Sequence No

B Packets
@ Acks

A

OCOQIIIIIII)(

llxl lnlll

Now what? — send
retransmissions as soon
as detected

Time

v

