Project 3 Overview

15-441 Spring 2010
Recitation #9



So Far ..

* |RC Server (Project 1)

— Focus: IRC protocol, select()

* IRC Routing (Project 2)
— Focus: Routing (OSPF)
— Working as a team



Now what?

* Project 3
— A bit of BitTorrent
— Flow Control
— Congestion Control

— Again, work in teams

e Choose fast and mail your andrew ids (id1 id2) it to
kaushik@cs.cmu.edu with the subject "15441 GROUP”



mailto:kaushik@cs.cmu.edu

BitTorrent

|| Peer4
Peer 2 =
Tracker

[ ]
Peer 1

= s
2

TCP

Get the torrent file (has tracker and metadata for the file)

Contact the tracker

Tracker tells the peer which peers to contact for the different chunks
Use TCP to get the chunks, use checksum to see if error-free and merge




Chunking and hashing

* Original file

* Chunks

* Hashing

* Torrent

Hash I



This project

Open chunks file, read the list of chunk hashes
— All file data accessed from a single master data file
— Peers are configured to tell them what chunks they own

Send WHOHAS <list>
— Instead of the tracker, flood the network

Receive IHAVE <list> from different peers

GET <chunk-hash> for each chunk from some peer
— Instead of TCP, use UDP
— Implement congestion control

Check the hash(chunk_recvd) with chunk_hash
Merge all the received chunks



4 bytes
Magic Version Type
Header Len Packet Len
Seq Num
Ack Num

Basic packet header

Packet formats

4 bytes

\

\

15441 1
16 60
invalid
invalid
2 padding

Chunk Hash #1 (20 bytes)

Chunk Hash #2 (20 bytes)

WHOHAS request

4 bytes
15441 1
16 1016
24
invalid
Chunk Data (1000 bytes)

DATA packet




Terminology

Master-data-file

— All the data in the network is present here
— A peer can only access the chunk that it owns
— A peer owns a chunk if chunk-id and hash present in the has-chunk-file

Master-chunk-file
— File that lists chunk IDs and hashes for the chunks in the master-data-file

Has-chunk-file

— Per-node file containing list of hashes a node owns
— Chunk IDs in this file match with those in the master-chunk-file

Get-chunk-file

— Provided by user; contains the chunk ids and hashes to be downloaded

— Chunk IDs in this file do not match with those in the master-chunk file;
they represent the position of the chunk in the file

See Section 5 of the project description for an example



More terminology

* Peer-list-file
— Contains list of all the peers in the network

— In this project, each peer knows the identity of
every other peer

* Peer-identity
— Used by the peer to get its IP address and port

e Max-downloads

— Maximum number of simultaneous connections
allowed in each direction



Provided files

hupsim.pl
— Emulates a network topology using topo.map
spiffy.[c|h]
— Interfaces with the simulator to send and receive packets (spiffy_sendto(), spiffy_recvfrom())
sha.[c|h]
— Generates SHA-1 hash
input_buffer.[c]|h]
— Handles user input
debug.[c]|h]
— Helps in debugging
bt _parse.[c|h]
— Parses command-line arguments
peer.c
— Skeleton peer file (handles some setup and processing)
nodes.map
— Peer-list-file
topo.map
— Network topology used by hupsim.pl (your code should not read this file)
make-chunks
— Creates chunk-file given an input file



Flow Control and Congestion Control

* Implement sliding window

— Only sender window (receiver window size need
not be communicated in the header)

— Packet-based sliding window (unlike TCP)
* Implement congestion control (on top of UDP)
— Only for data packets (chunks)

— Slow start, congestion avoidance, fast retransmit
— More on these in the next recitation



Checkpoints

Checkpoint 1 (Due: April 9t") — Start now!

— Simple configuration of 2 hosts

— Generate WHOHAS queries based on the input
— Correctly respond with IHAVE

— Assume no loss in the network

Checkpoint 2 (Due: April 13t)

— Send GET request and download entire chunk (2-host
configuration)

— Use simple stop-and-wait (no loss)
Checkpoint 3 (Due: April 19t)

— Sliding window

— Reliability (timeouts and retransmissions)

— Spiffy router to test your network (with loss)
Checkpoint 4 (Due: April 231)

— Simple congestion avoidance



Project advice

Stay ahead of the checkpoints

Be an early bird (10 extra points)

— Submit by April 27t
Don’t be late

— Submit by April 30t
Project 3 contest! (More extra credit)

— Optimize your system and make it robust
Be efficient while working as a team
Read the project write-up more than once!
See FAQ (coming soon)

See bboard for related questions
Post on bboard if nothing above helps



