DEBUGGING IN THE
REAL WORLD




Qutline

What can go wrong?
How can we avoid errors?

What tools are available to debug errors?
Valgrind
GDB



What can go wrong?

Project 1: IRC server, what are our components?
managing connections (e.g., sockets)
handling clients (e.g., client pool)

handling data (e.g., buffers and strings manipulation)
IRC protocol (e.g., RFC ... JOIN, PART, MSG)

What kind of errors can we have?¢ (2 major types)

Logical error vs. fault (crashing)



Error Types and Project |

What logic errors do you need to be careful of?
IRC protocol following the RFC

Handling socket information properly

What faults do you need to be careful of?
Memory copying (e.g., buffer to buffer)
String manipulation (e.g., handling client messages)
Array accesses (e.g., your client pool)

Socket descriptors



Save yourself a headachel

First and foremost: practice smart programming to
avoid faults.

CHECK RETURN CODES!
Bad: read(fd, &buffer, nbtr);
Good: if((nbytes=read(fd, &buffer, nbtr))==-1)

Use safe functions: snprintf(good) vs. sprintf(bad)
Check pointers before use: if(clientfd!=NULL) { ... }



Qutline

What can go wrong?

How can we avoid errors?

What tools are available to debug errors?
valgrind

strace
GDB



Reality: errors will happen

We are all human (I think!), bugs will occur

Goal: find and terminate them as fast as possible

Don't: toss printf()’s everywhere and hope for the
best, this takes a long time

Do: use a great set of tools for debugging
Saves time =2 saves points!

Saves headache =2 saves sanity!



Qutline

What can go wrong?
How can we avoid errors?

What tools are available to debug errors?
Valgrind
GDB



Valgrind debugging tool

Goal: detect memory errors
Accesses outside of memory bounds

Memory leaks

Great for finding errors that would only show
during harsh test cases

Yes, we will use harsher test cases than checkpoint 1
and checkpoint 2 for final grading!



Valgrind: Example Errors

Can you find two errors in this program?

Hinclude <stdlib.h>

void f(void) {
int* x = malloc(10 * sizeof(int));

x[10] = 0; =—
) 1. Invalid memory access
nt ;F)c.:un(vmd) { 2. Memory never free()'d

return O;

}



Running Example in Valgrind

Running valgrind with the program:

valgrind --leak-check=yes myprog argl arg?2

Invalid access output (error 1):

==19182== Invalid write of size 4
==19182== at 0x804838F: f (example.c:6) «— Where the

Process |D ——19182== by 0x80483AB: main (example.c:11)

SV >

error occurs

Memory leak output (error 2):

==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==19182== at 0x1B8FF5CD: malloc (vg=replace_malloc.c:130)
==19182== by 0x8048385: f (a.c:5)

==19182== by 0x80483AB: main (a.c:11) Size of the leak



Qutline

What can go wrong?
How can we avoid errors?

What tools are available to debug errors?
Valgrind
GDB



GDB: GNU Project Debugger

The best debugging tool for your projects!
Segfaulting? No problem.

You can step through your program, line by line and
monitor any memory!

Seriously, it doesn’t get any better than this



How to use GDB

Two major ways:
Read a core dump

step through a program

Getting a segfault and just want to determine
where it happened?
Get a core file, run: ulimit —c unlimited

Cause the program to segfault

MUST MUST MUST: enable —g flag when compiling



GDB: reading a core file

Enable core dumping and run:
$ ulimit -c unlimited
$ ./cache_sim config.exampleO < trace.exampleO

Segmentation fault (core dumped)

Open the core in GDB:
Function where the

$ gdb cache_sim core / segfault occurs (load)

#0 0x0804%bae in memory::load (..., ...) at cache_sim.cc:252
252 if(Id_tag_store[il[index].valid) { «— Line where the segfault
(gdb) backtrace occurs

#0 0x0804%bae in memory::load (..., ...) at cache_sim.cc:252
#1 0x0804a3e2 in handle_load_reference (...) at cache_sim.cc:366

#2 0x0804bé3e in main (..., ...) at cache_sim.cc:562 €— How we got there




GDB: Being interactive w/ EMACS

You can step through your code with EMACS

You use VIM?2 No problem, so do | ... use EMACS just to
debug!

How to run in EMACS:
emacs <source file.c>
ctrl+x+3 (splits screen)
ctrl+x+o (moves cursor to right side of screen)
esct+x (brings up line at bottom)
gdb (type in bottom and hit enter)

hit enter 1 more time! (fix executable file name if needed)



GDB: useful commands

Useful commands for you to know:
Start the program: run <argl> <arg2> ...
Create breakpoint: break <line> OR break <function>
Goto next line: next
Step into a function: step
Check a variable value: print <variable name>

Display a variable value: display <variable name>



Wrapup: Questions anyone?

Questions on debugging?
Valgrind, GDB...

Questions on project 12

IRC protocol, sockets, client pool, buffers...

General course questions?

Ethernet, wireless, physical layer, application layer...



