
Sockets and concurrency

15-441 Spring 2010, Recitation 3

Your Awesome TAs



Recitation Outline

• Sockets Reloaded

• Checkpoint 2

• Project 1 Q&A

• General Q&A

(A little throwback to Windows 3.1)



Revisiting Network Sockets

• Sockets, used for network IPC
– How does this differ from IPC with two local 

processes?

• What did we need to setup for a socket?
– Address of endpoint
– Port associated with application

• How does reading/writing differ from file I/O?
– read() not guaranteed to provide all requested data
– Blocking much more of an issue



Socket Review

• Sockets are treated just like files:

– socket() returns a file descriptor

– read() & write(): same interface as for files

• Types of sockets

– Blocking (synchronous)

– Non-blocking

• Polling

• Asynchronous notification



Handling Connections

• Examples of network applications that rely on 
handling concurrent connections?
– Web servers, file servers (AFS), IRC, AIM, etc…

• How can an application handle multiple 
connections?
– Threading & select()

• Which do you have to use for all projects?
– select()



Select()

• How select works
– Allows you to monitor multiple sockets

– API for monitoring multiple file descriptors

• Two main sets of descriptors
– Read & write descriptors

• Use bit-array fd_set to monitor
– fd_set readfds, writefds;

• First set all to 0
– FD_ZERO(&readfds); FD_ZERO(&writefds);



Telling Select What To Monitor

• After zeroing out, set FDs to be monitored

– Original FD returned by socket() for incoming 
connections

– All currently connected client’s FDs

• So, assuming sfd=socket(…);

– FD_SET(sfd, &readfds);

– Loop through client FDs: 
FD_SET(client[i].sfd, &readfds)



Using select()

• Select checks from bit 0 in the bit-array up until 
maxfd
– Initially: maxfd=sfd;
– Looping through clients: if(client[i].fds>maxfd) …

• Now, call it!
– select(maxfd+1, &readfds, NULL, NULL, NULL);

 IMPORTANT: select() overwrites &readfs with 
new bit-array, representing which file descriptors 
are ready



After Select() Returns

• Check the new bit-array

• What if select() sets the bit for sfd?
– You have a new client

– if (FD_ISSET(sfd, &readfds)) { accept_client(…); }

• What if select() sets the bit for a client FD?
– Data is ready to be read

– Must loop through all of your client FDs with 
FD_ISSET, if it’s set: handle_input(…)



I’ve handled the whole array…

• After you’ve gone through and used 
FD_ISSET():
– Start all over!

– FD_ZERO(&readfds);

– FD_SET(sfd, &readfds);

– …

• In other words, create a while(1) around this 
and loop and loop!
– Remember: keep the while(1) loop thin



More on Accepting New Clients

• Whenever FDISSET(sfd, &readfds), you have a 
new client

• You use accept() on sfd and save the returned 
file descriptor as your new client’s FD

• Store all of these FDs and make sure to set 
them in readfds before you call select()



Recitation Outline

• Sockets Reloaded

• Checkpoint 2

• Project 1 Q&A

• General Q&A

(A little throwback to Windows 3.1)



Checkpoint 2

• Available under “Assignments”

• What you need to do:
– Handle concurrent connections (this lecture!)
– Echo back any commands to the client
– Avoid blocking, one client should not be able to stall 

server by sending a partial command
– Handle a malicious client

• Sends you long data with no ‘\n’ … don’t crash!
• Handle gracefully (preferably truncating)



Recitation Outline

• Sockets Reloaded

• Checkpoint 2

• Project 1 Q&A

• General Q&A

(A little throwback to Windows 3.1)


