Sockets and concurrency

15-441 Spring 2010, Recitation 3
Your Awesome TAsS



Recitation Outline

Windows
Sockets

Sockets Reloaded
Checkpoint 2
Project 1 Q&A
General Q&A

(A little throwback to Windows 3.1)



Revisiting Network Sockets

e Sockets, used for network IPC

— How does this differ from IPC with two local
processes?

 What did we need to setup for a socket?
— Address of endpoint
— Port associated with application

 How does reading/writing differ from file 1/0?
— read() not guaranteed to provide all requested data
— Blocking much more of an issue



Socket Review

* Sockets are treated just like files:
— socket() returns a file descriptor
— read() & write(): same interface as for files

* Types of sockets
— Blocking (synchronous)

— Non-blocking
* Polling
* Asynchronous notification



Handling Connections

 Examples of network applications that rely on
handling concurrent connections?

— Web servers, file servers (AFS), IRC, AIM, etc...

 How can an application handle multiple
connections?

— Threading & select()

 Which do you have to use for all projects?
— select()



Select()

How select works
— Allows you to monitor multiple sockets
— API for monitoring multiple file descriptors

Two main sets of descriptors
— Read & write descriptors

Use bit-array fd_set to monitor

— fd_set readfds, writefds;

First setallto O

— FD ZERO(&readfds);, FD _ZERO(&writefds),



Telling Select What To Monitor

» After zeroing out, set FDs to be monitored

— Original FD returned by socket() for incoming
connections

— All currently connected client’s FDs
* So, assuming sfd=socket(...),
— FD _SET(sfd, &readfds);

— Loop through client FDs:
FD SET(client[i].sfd, &readfds)



Using select()

* Select checks from bit 0 in the bit-array up until
maxfd

— Initially: maxfd=sfd;
— Looping through clients: if(client[i].fds>maxfd) ...

* Now, call it!
— select(maxfd+1, &readfds, NULL, NULL, NULL),

» IMPORTANT: select() overwrites &readfs with
new bit-array, representing which file descriptors
are ready



After Select() Returns

* Check the new bit-array

 What if select() sets the bit for sfd?
— You have a new client
— if (FD_ISSET(sfd, &readfds)) { accept client(...); }

 What if select() sets the bit for a client FD?

— Data is ready to be read

— Must loop through all of your client FDs with
FD_ISSET, if it’s set: handle _input(...)



I've handled the whole array...

e After you've gone through and used
FD_ISSET():

— Start all over!
— FD_ZERO(&readfds);
— FD_SET(sfd, &readfds);

* |[n other words, create a while(1) around this
and loop and loop!

— Remember: keep the while(1) loop thin



More on Accepting New Clients

 Whenever FDISSET(sfd, &readfds), you have a
new client

* You use accept() on sfd and save the returned
file descriptor as your new client’s FD

» Store all of these FDs and make sure to set
them in readfds before you call select()



Recitation Outline

Windows
Sockets

Sockets Reloaded
Checkpoint 2
Project 1 Q&A
General Q&A

(A little throwback to Windows 3.1)



Checkpoint 2

* Available under “Assignments”

 What you need to do:
— Handle concurrent connections (this lecture!)
— Echo back any commands to the client

— Avoid blocking, one client should not be able to stall
server by sending a partial command
— Handle a malicious client

* Sends you long data with no ‘\n’ ... don’t crash!
* Handle gracefully (preferably truncating)



Recitation Outline

Windows
Sockets

Sockets Reloaded
Checkpoint 2
Project 1 Q&A
General Q&A

(A little throwback to Windows 3.1)



