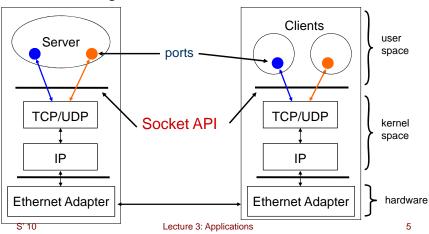
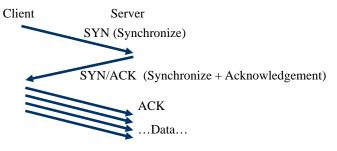

What is Layering? User A User B Application **Transport** Network Link Host Host Modular approach to network functionality

3

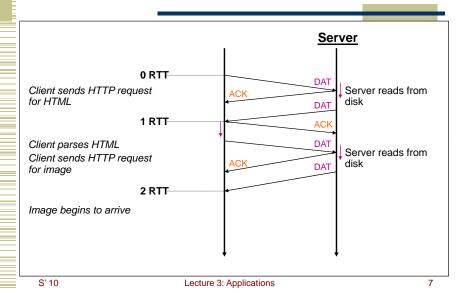

Protocol Demultiplexing

Server and Client

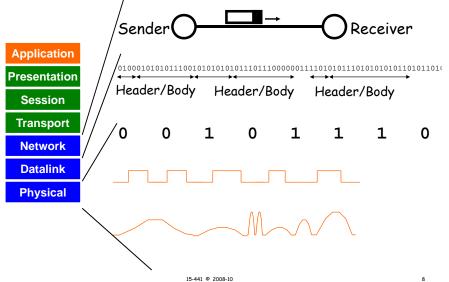

Server and Client exchange messages over the network through a common Socket API

One more detail: TCP

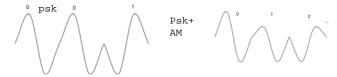
- TCP connections need to be set up
 - "Three Way Handshake":



2: TCP transfers start slowly and then ramp up the bandwidth used (so they don't use too much)

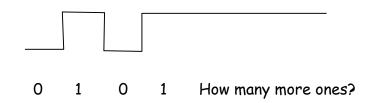

Lecture 3: Applications

Persistent Connection Solution



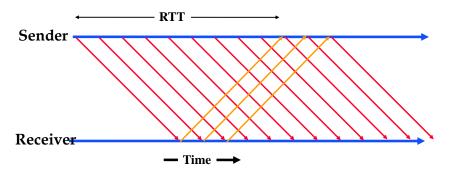
From Signals to Packets

Past the Nyquist Limit

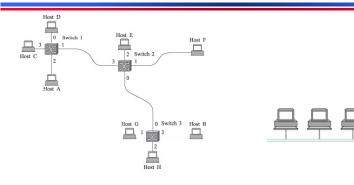

- More aggressive encoding can increase the channel bandwidth.
 - Example: modems
 - · Same frequency number of symbols per second
 - · Symbols have more possible values

- Every transmission medium supports transmission in a certain frequency range.
 - The channel bandwidth is determined by the transmission medium and the quality of the transmitter and receivers
 - Channel capacity increases over time

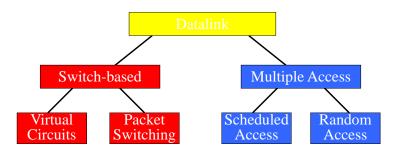
Lecture 4 15-441 @ 2008-10


Why Encode?

NRZ NRZI Manchester

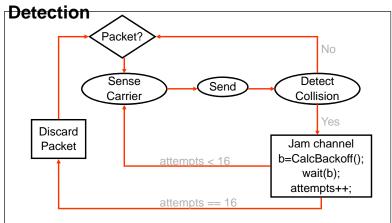

15-441 © CMU 2010

Bandwidth-Delay Product

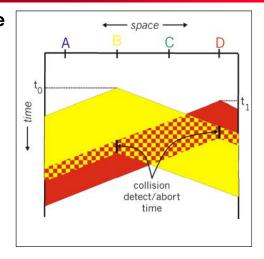

$$Max Throughput = \frac{Window Size}{Roundtrip Time}$$

Datalink Architectures

- Point-Point with switches
- Media access control.


Datalink Classification

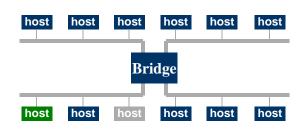
13


Ethernet MAC (CSMA/CD)

Carrier Sense Multiple Access/Collision

Minimum Packet Size

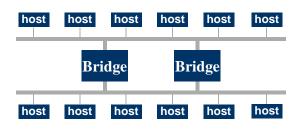
- What if two people sent really small packets
 - » How do you find collision?


Learning Bridges

9-21-06

14

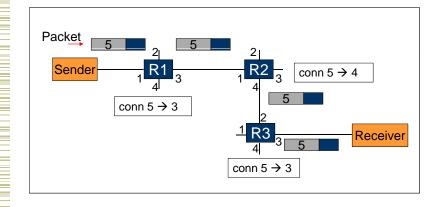
- Manually filling in bridge tables?
 - Time consuming, error-prone
- Keep track of source address of packets arriving on every link, showing what segment hosts are on
 - Fill in the forwarding table based on this information


15

Lecture 8: Bridging/Addressing/Forwarding

Spanning Tree Bridges

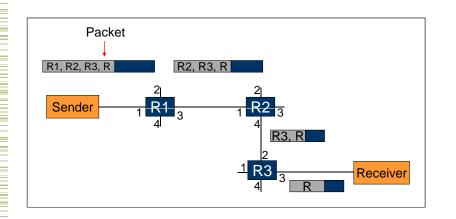
- More complex topologies can provide redundancy.
 - But can also create loops.
- What is the problem with loops?
- Solution: spanning tree


9-21-06

Lecture 8: Bridging/Addressing/Forwarding

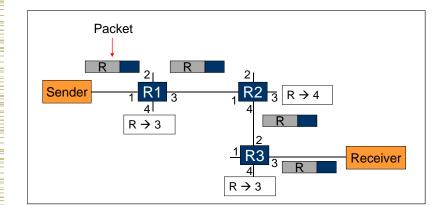
17

Simplified Virtual Circuits Example

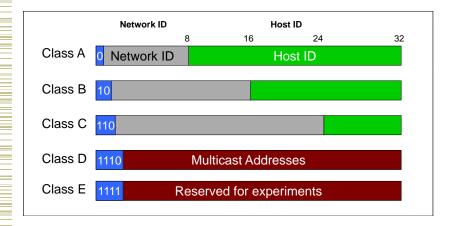

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

1Ω


Source Routing Example

Global Address Example


9-21-06

IP Address Classes (Some are Obsolete)

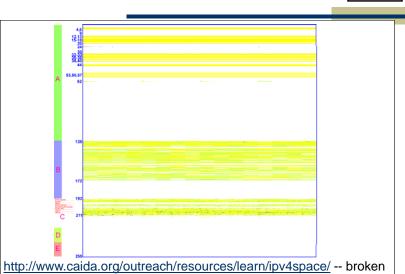
9-21-06

15-411 S'10

Lecture 8: Bridging/Addressing/Forwarding

ARP Cache Example

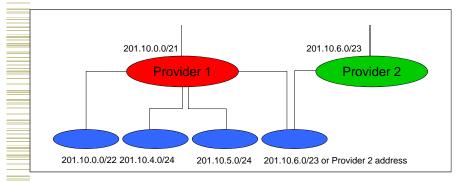
• Show using command "arp -a"


Interface: 128.2.222.198 on Interface 0x1000003 Internet Address Physical Address 128.2.20.218 00-b0-8e-83-df-50 dynamic 128.2.102.129 00-b0-8e-83-df-50 dynamic 128.2.194.66 00-02-b3-8a-35-bf dynamic 128.2.198.34 00-06-5b-f3-5f-42 dynamic 128.2.203.3 00-90-27-3c-41-11 dynamic 128.2.203.61 08-00-20-a6-ba-2b dynamic 128.2.205.192 00-60-08-1e-9b-fd dynamic 128.2.206.125 00-d0-b7-c5-b3-f3 dynamic 128.2.206.139 00-a0-c9-98-2c-46 dynamic 128.2.222.180 08-00-20-a6-ba-c3 dynamic 128.2.242.182 08-00-20-a7-19-73 dynamic 128.2.254.36 00-b0-8e-83-df-50 dynamic

15-411 S'10 Lecture 8: IP Addressing/Packets

22

IP Address Utilization ('97)

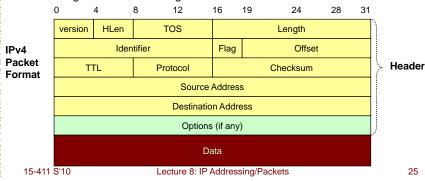


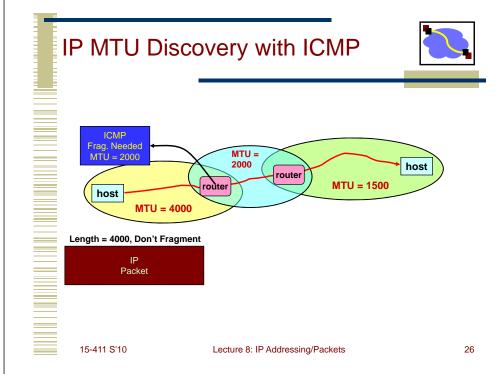
Lecture 8: IP Addressing/Packets

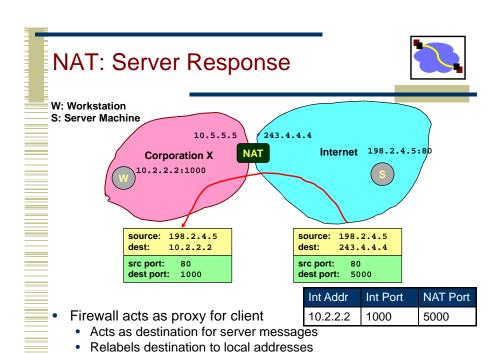
CIDR Implications

Longest prefix match!!

15-411 S'10 Lecture 8: IP Addressing/Packets

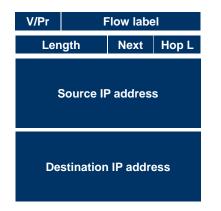

24

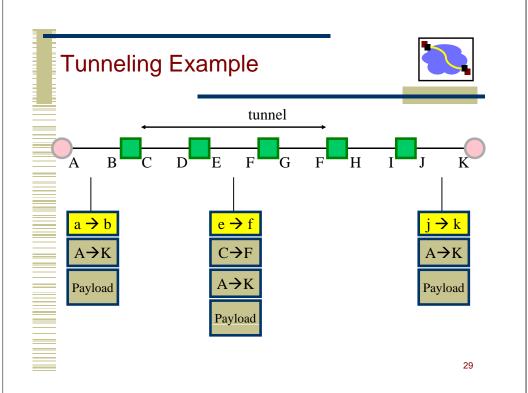

IP Service Model

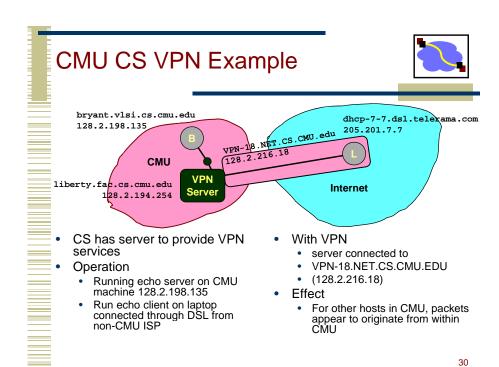

- Low-level communication model provided by Internet
- Datagram

IPv4

- · Each packet self-contained
 - · All information needed to get to destination
 - · No advance setup or connection maintenance
- · Analogous to letter or telegram







- "Next generation" IP.
- Most urgent issue: increasing address space.
 - 128 bit addresses
- Simplified header for faster processing:
 - No checksum (why not?)
 - No fragmentation (?)
- Support for guaranteed services: priority and flow id
- Options handled as "next header"
 - · reduces overhead of handling options

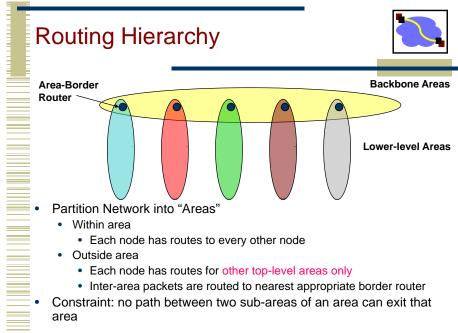
Comparison of LS and DV Algorithms

31

Message complexity

- <u>LS:</u> with n nodes, E links, O(nE) messages
- <u>DV:</u> exchange between neighbors only

Speed of Convergence


- LS: Relatively fast
 - Complex computation, but can forward before computation
 - · may have transient loops
- <u>DV</u>: convergence time varies
 - may have routing loops
 - · count-to-infinity problem
 - faster with triggered updates

Space requirements:

- LS maintains entire topology
- DV maintains only neighbor state

Robustness: router malfunctions

- LS: Node can advertise incorrect link cost
 - Each node computes its own table
- DV: Node can advertise incorrect path cost
 - Each node's table used by others (error propagates)

2/11/2010 Lecture 10: Intra-Domain Routing

2/11/2010 Lecture 10: Intra-Domain Routing

32

Example IGP EGP Solution Solutio

Transit vs. Peering Transit (\$\$ 1/2) Transit (\$\$\$) ISP P ISP Y Transit (\$) Transit (\$\$\$) Transit (\$\$\$) Peering ISP X Transit (\$\$) Transit (\$\$) Transit (\$\$) -00 Processing order of attributes: Select route with highest LOCAL-PREF Select route with shortest AS-PATH

Multi Protocol Label Switching - MP

- Selective combination of VCs + IP
 - Today: MPLS useful for traffic engineering, reducing core complexity, and VPNs
- Core idea: Layer 2 carries VC label
 - Could be ATM (which has its own tag)
 - Could be a "shim" on top of Ethernet/etc.:
 - Existing routers could act as MPLS switches just by examining that shim -- no radical re-design. Gets flexibility benefits, though not cell switching advantages

Layer 3 (IP) header

Layer 2 header

Layer 3 (IP) header

MPLS label

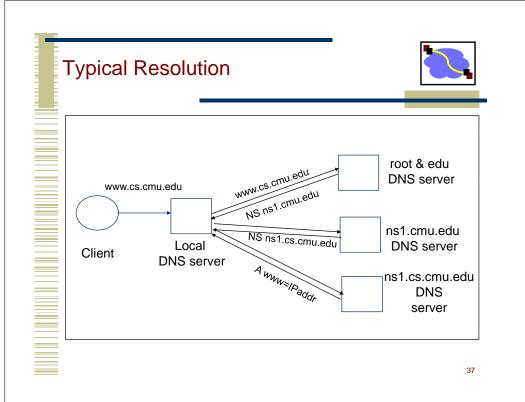
Layer 2 header

DNS Records

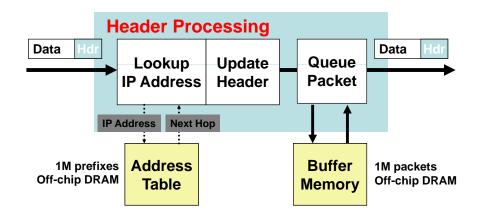
Path vector

33

RR format: (class, name, value, type, ttl)

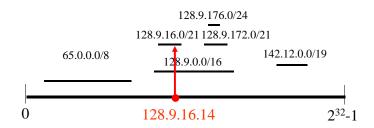

- DB contains tuples called resource records (RRs)
 - Classes = Internet (IN), Chaosnet (CH), etc.
 - · Each class defines value associated with type

FOR IN class:

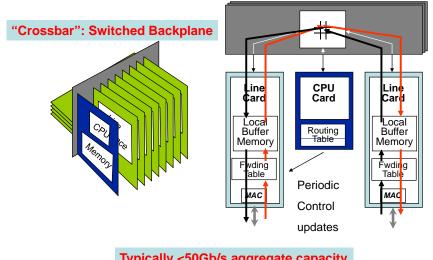

- Type=A
 - name is hostname
 - · value is IP address
- Type=NS
 - **name** is domain (e.g. foo.com)
 - value is name of authoritative name server for this domain
- Type=CNAME

· Apply MED (if routes learned from same neighbor)

- name is an alias name for some "canonical" (the real) name
- · value is canonical name
- Type=MX
 - value is hostname of mailserver associated with name



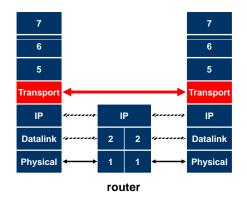
Generic Router Architecture


38

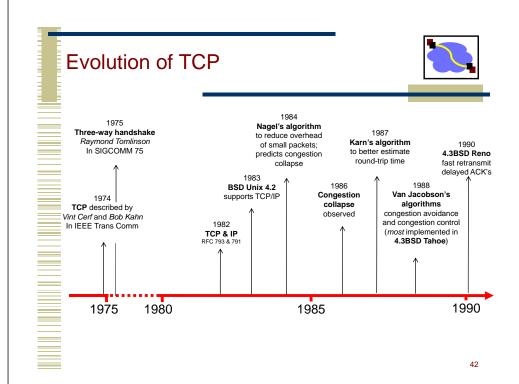
IP Lookups find Longest Prefixes

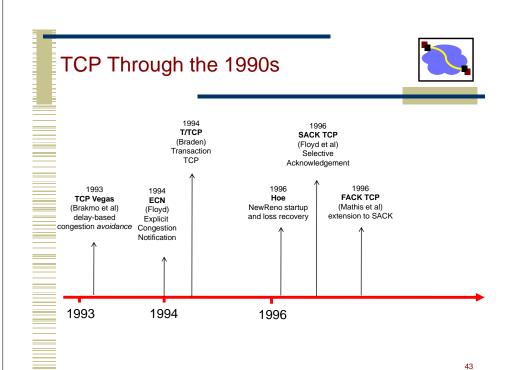
Routing lookup: Find the longest matching prefix (aka the most specific route) among all prefixes that match the destination address.

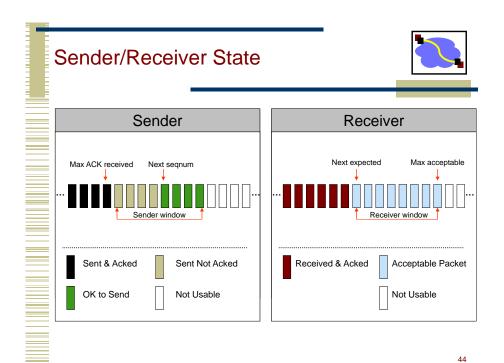
Third Generation Routers

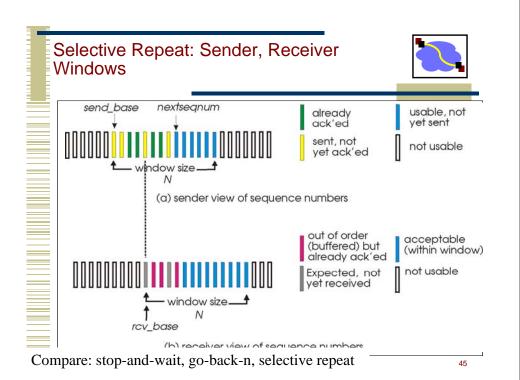


Typically <50Gb/s aggregate capacity

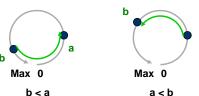

Transport Protocols




- Lowest level end-toend protocol.
 - Header generated by sender is interpreted only by the destination
 - Routers view transport header as part of the payload

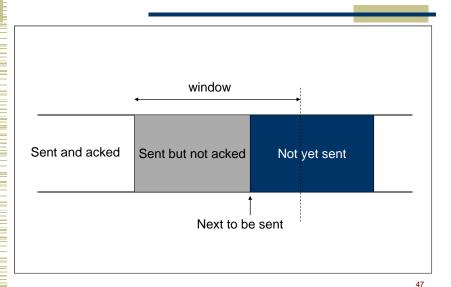


41



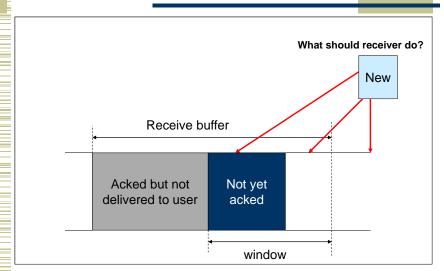
Sequence Numbers

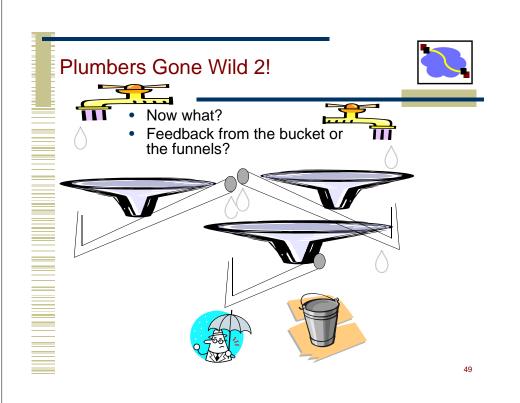
- 32 Bits, Unsigned → for bytes not packets!
 - · Circular Comparison



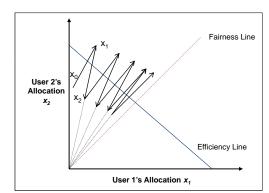
- Why So Big?
 - For sliding window, must have |Sequence Space| > |Sending Window| + |Receiving Window|
 - No problem
 - · Also, want to guard against stray packets
 - With IP, packets have maximum lifetime of 120s
 - Sequence number would wrap around in this time at 286MB/s

46


Window Flow Control: Send Side

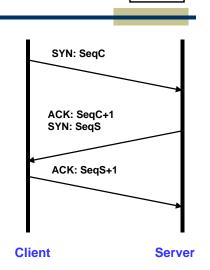


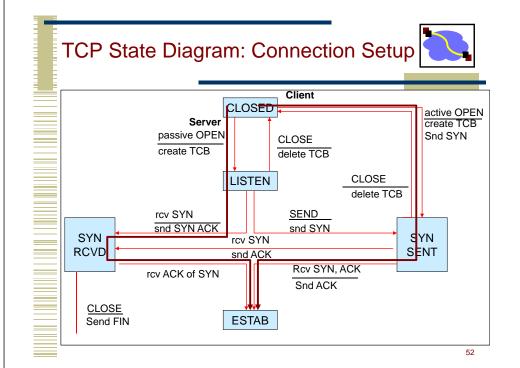
Window Flow Control: Receive Side



What is the Right Choice?

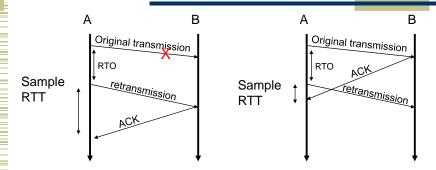
- Constraints limit us to AIMD
 - Can have multiplicative term in increase (MAIMD)
 - AIMD moves towards optimal point




50

Establishing Connection: Three-Way handshake

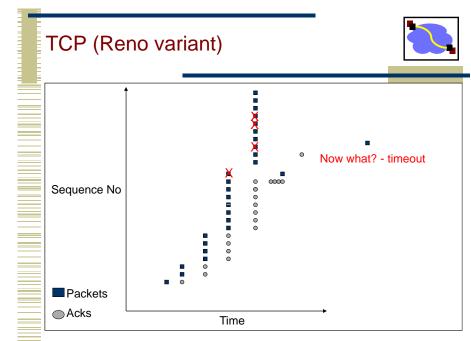
- Why not simply chose 0?
 - Must avoid overlap with earlier incarnation
 - Security issues
- Each side acknowledges other's sequence number
 - SYN-ACK: Acknowledge sequence number + 1
- Can combine second SYN with first ACK

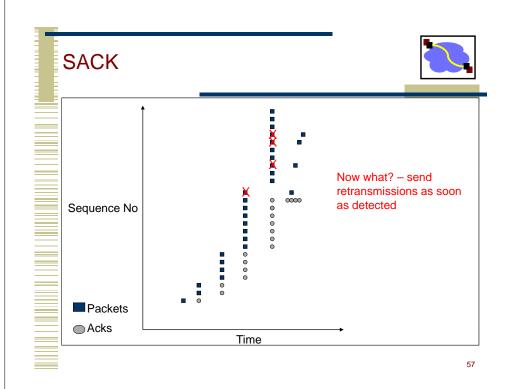


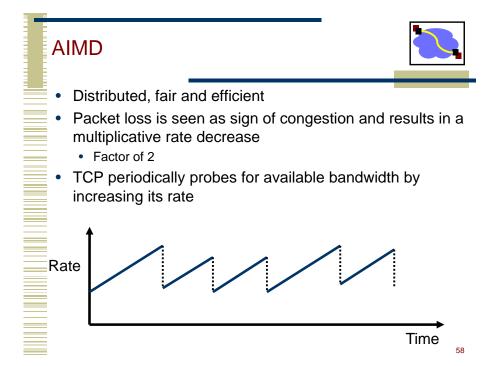
51

RTT Sample Ambiguity

- Karn's RTT Estimator
 - If a segment has been retransmitted:
 - · Don't count RTT sample on ACKs for this segment
 - · Keep backed off time-out for next packet
 - Reuse RTT estimate only after one successful transmission

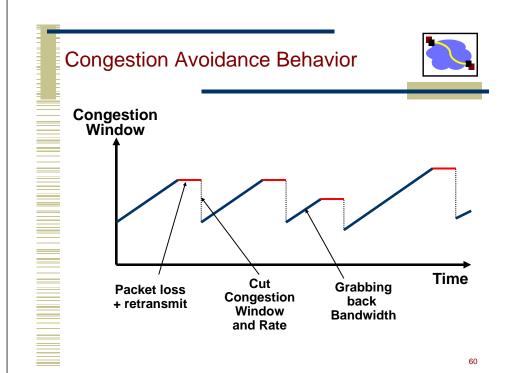

Jacobson's Retransmission Timeout




- Key observation:
 - At high loads, round trip variance is high
- Solution:
 - · Base RTO on RTT and standard deviation
 - RTO = RTT + 4 * rttvar
 - new_rttvar = β * dev + (1- β) old_rttvar
 - Dev = linear deviation
 - Inappropriately named actually smoothed linear deviation

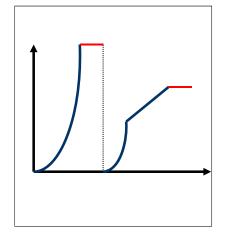
5

Fast Retransmit Sequence No Packets Acks Time

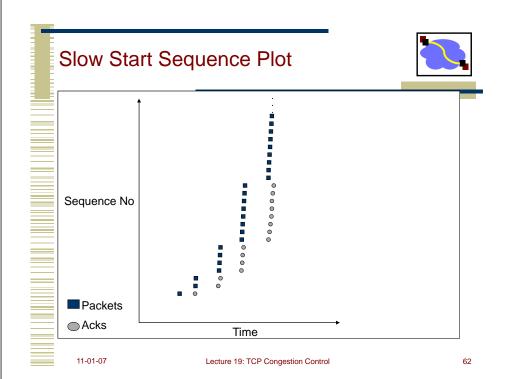


Congestion window helps to "pace" the transmission of data packets In steady state, a packet is sent when an ack is received Data transmission remains smooth, once it is smooth Self-clocking behavior Packet Conservation

Lecture 19: TCP Congestion Control

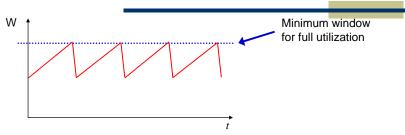

11-01-07

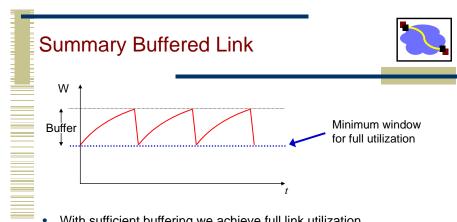
Slow Start Packet Pacing


- How do we get this clocking behavior to start?
 - Initialize cwnd = 1
 - Upon receipt of every ack, cwnd = cwnd + 1
- Implications
 - Window actually increases to W in RTT * log₂(W)
 - Can overshoot window and cause packet loss

11-01-07

Lecture 19: TCP Congestion Control


61


Summary Unbuffered Link

63

- The router can't fully utilize the link
 - · If the window is too small, link is not full
 - · If the link is full, next window increase causes drop
 - · With no buffer it still achieves 75% utilization

- With sufficient buffering we achieve full link utilization
 - The window is always above the critical threshold
 - · Buffer absorbs changes in window size
 - Buffer Size = Height of TCP Sawtooth
 - Minimum buffer size needed is RTT * BW
 - · Delay? Between RTT and 2*RTT

11-01-07 Lecture 19: TCP Congestion Control

11-01-07

Lecture 19: TCP Congestion Control

TCP (Summary)

- General loss recovery
 - Stop and wait
 - · Selective repeat
- TCP sliding window flow control
- TCP state machine
- TCP loss recovery
 - Timeout-based
 - RTT estimation
 - Fast retransmit
 - · Selective acknowledgements

11-01-07

Lecture 19: TCP Congestion Control

65

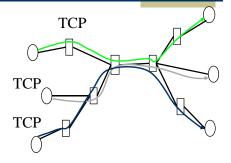
TCP (Summary)

- Congestion collapse
 - Definition & causes
- Congestion control
 - Why AIMD?
 - Slow start & congestion avoidance modes
 - ACK clocking
 - Packet conservation
- TCP performance modeling
 - · How does TCP fully utilize a link?
 - · Role of router buffers

11-01-0

Lecture 19: TCP Congestion Control

66


Congestion Control in Today's Internet

End-system-only solution (TCP)

- dynamically estimates network state
- packet loss signals congestion
- reduces transmission rate in presence of congestion
- · routers play little role

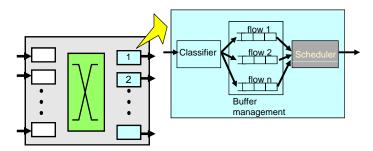
(c) CMU, 2005-10

Feedback Control

Control
Time scale

RTT (ms)

67


Capacity
Planning
Months

(c) CMU, 2005-10

Router Mechanisms

- Buffer management: when and which packet to drop?
- Scheduling: which packet to transmit next?

Typical Internet Queueing

- FIFO (scheduling discipline) + drop-tail (drop policy)
 - Cong control at edges
 - No flow differentiation
 - Lock out
 - Random drop
 - Drop front
 - Full queues
 - Early random drop (RED)
 - Explicit congestion notification
 - decbit

Max thresh

Average Queue Length

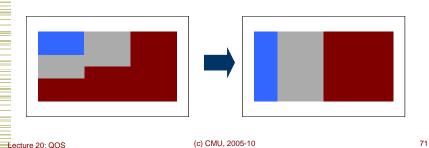
P(drop)

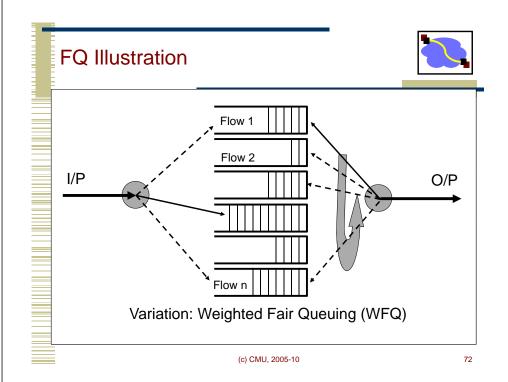
1.0

max_p

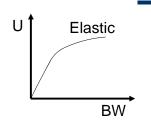
min_{th}

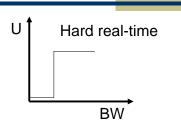
Avg queue length

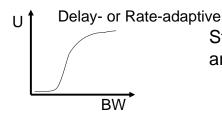

(c) CMU, 2005-10


70

Fair Queuing

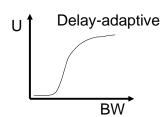

- Mapping bit-by-bit schedule onto packet transmission schedule
- Transmit packet with the lowest F_i at any given time
 - How do you compute F_i?





Utility Curve Shapes

Stay to the right and you are fine for all curves


(c) CMU, 2005-10

73

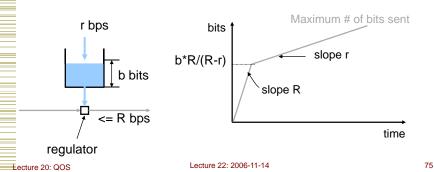
Admission Control

- If U is convex → inelastic applications
 - U(number of flows) is no longer monotonically increasing
 - Need admission control to maximize total utility
- Admission control → deciding when adding more people would reduce overall utility
 - · Basically avoids overload

Eecture 20: QOS

(c) CMU, 2005-10

74

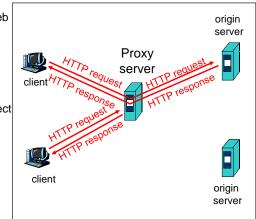

Token Bucket

Parameters

- r average rate, i.e., rate at which tokens fill the bucket
- b bucket depth
- R maximum link capacity or peak rate (optional parameter)

A bit is transmitted only when there is an available token

Guarantee Proven by Parekh


- · Given:
 - Flow *i* shaped with token bucket and leaky bucket rate control (depth *b* and rate *r*)
 - Network nodes do WFQ
- Cumulative queuing delay D_i suffered by flow i has upper bound
 - **D**_i < **b/r**, (where r may be much larger than average rate)
 - Assumes that $\Sigma r < \text{link speed at any router}$
 - All sources limiting themselves to r will result in no network queuing

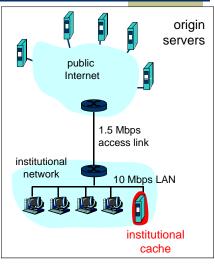
Eecture 20: QOS (c) CMU, 2005-10 76

Web Proxy Caches

- User configures browser: Web accesses via cache
- Browser sends all HTTP requests to cache
 - · Object in cache: cache returns object
 - Else cache requests object from origin server, then returns object to client

15-441 S'10

W/Caching Example (3)



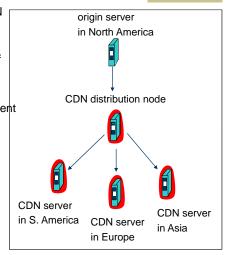
Install cache

Suppose hit rate is .4

Consequence

- 40% requests will be satisfied almost immediately (say 10 msec)
- 60% requests satisfied by origin server
- Utilization of access link reduced to 60%. resulting in negligible delays
- Weighted average of delays
- = .6*2 sec + .4*10msecs < 1.3 secs

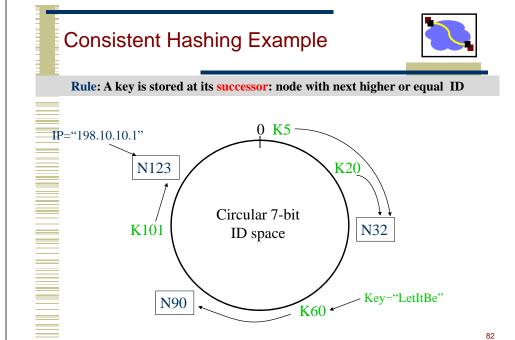
15-441 S'10 78


Content Distribution Networks (CDNs)

The content providers are the CDN customers.

Content replication

- CDN company installs hundreds of CDN servers throughout Internet
 - Close to users
- CDN replicates its customers' content in CDN servers. When provider updates content, CDN updates servers

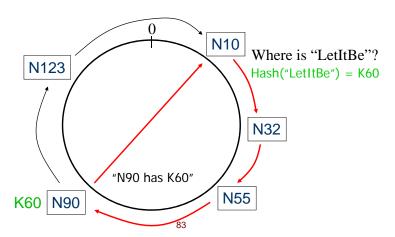

How Akamai Works cnn.com (content provider) DNS root server Akamai server Get foo.jpg Get index. html Akamai high-level DNS server Akamai low-level DNS server Nearby matching Akamai server 10 End-user Get /cnn.com/foo.jpg Lecture 21: CDN/Hashing/P2P

79 15-441 S'10 15-441 S'10

Akamai – Subsequent Requests cnn.com (content provider) DNS root server Akamai server Akamai high-level DNS server Akamai low-level DNS server Nearby matching Akamai server

/cnn.com/foo.jpg

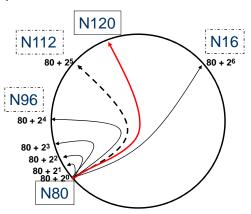
Lecture 21: CDN/Hashing/P2P


Lookups strategies

End-user

15-441 S'10

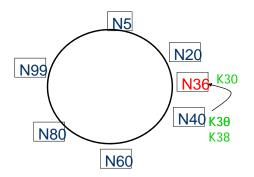
- Every node knows its successor in the ring
- Requires O(N) lookups



Reducing Lookups: Finger Tables

Each node knows m other nodes in the ring (it has m fingers) Increase distance exponentially

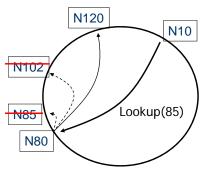
Finger *i* points to successor of $n+2^{i-1}$ i=1..m



Ω/

Join: Transfer Keys

Only keys in the range are transferred

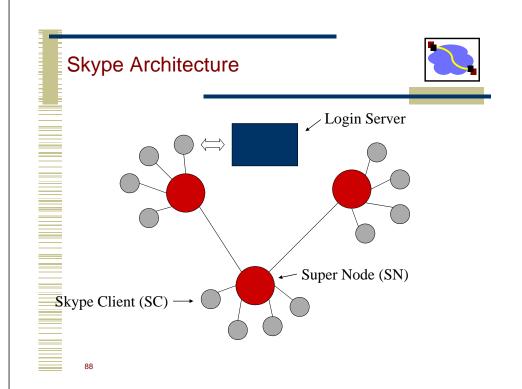

Copy keys 21..36 from N40 to N36

85

Handling Failures

- Problem: Failures could cause incorrect lookup
- **Solution:** Fallback: keep track of a list of immediate successors

86


Approaches to P2P

- Centralized
- Flooding
- Supernodes
- Routing

15-441 S'10

- Structured
- Un-structured

Lecture 22: P2P 87

Routing Queries in Freenet

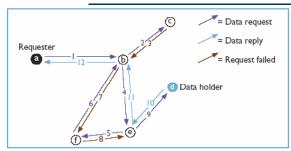
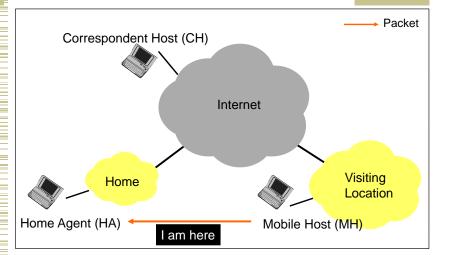


Figure 1.Typical request sequence. The request moves through the network from node to node, backing out of a dead-end (step 3) and a loop (step 7) before locating the desired file.

After success, node a creates a link in its routing table for the key to node d.

Note: alternatively, any node on path from d to a, e. g., e, can name itself as originator of data.

Routing to Mobile Nodes


- Obvious solution: have mobile nodes advertise route to mobile address/32??
- What are some possible solutions?
 - DHCP? (changing IP?)
 - TCP?
 - Learning bridges (e.g., at CMU)
 - Encapsulated PPP
 - · Interception & forwarding

90

Mobile IP (MH Moving)

91

Wireless Bit-Errors Router Computer 1 Computer 2 Loss → Congestion

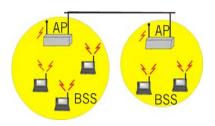
Wireless

92

Result: Low throughput

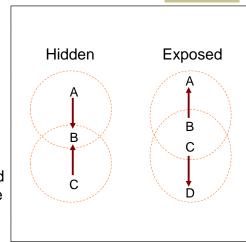
Burst losses lead to coarse-grained timeouts

Approach Styles (End-to-End)


- Improve TCP implementations
 - · Not incrementally deployable
 - Improve loss recovery (SACK, NewReno)
 - Help it identify congestion (ELN, ECN)
 - ACKs include flag indicating wireless loss
 - Trick TCP into doing right thing → E.g. send extra dupacks

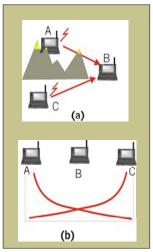
IEEE 802.11 Wireless LAN

- Wireless host communicates with a base station
 - Base station = access point (AP)
- Basic Service Set (BSS) (a.k.a. "cell") contains:
 - Wireless hosts
 - Access point (AP): base station
- BSS's combined to form distribution system (DS)



0/

CSMA/CD Does Not Work

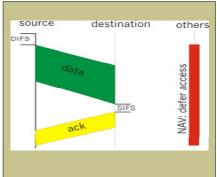

- Collision detection problems
 - Relevant contention at the receiver, not sender
 - Hidden terminal
 - Exposed terminal
 - Hard to build a radio that can transmit and receive at same time

Hidden Terminal Effect

- Hidden terminals: A, C cannot hear each other
 - Obstacles, signal attenuation
 - · Collisions at B
 - Collision if 2 or more nodes transmit at same time
- · CSMA makes sense:
 - Get all the bandwidth if you're the only one transmitting
 - Shouldn't cause a collision if you sense another transmission
- Collision detection doesn't work
- CSMA/CA: CSMA with Collision Avoidance

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 CSMA: sender


 If sense channel idle for DISF (Distributed Inter Frame Space)

then transmit entire frame (no collision detection)

- If sense channel busy then binary backoff

802.11 CSMA receiver:

 If received OK return ACK after SIFS (Short IFS) (ACK is needed due to lack of collision detection)

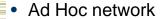
97

Important Lessons

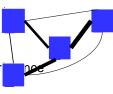
- · Many assumptions built into Internet design
 - · Wireless forces reconsideration of issues
- Link-layer
 - Spatial reuse (cellular) vs wires
 - · Hidden/exposed terminal
 - · CSMA/CA (why CA?) and RTS/CTS
- Network
 - Mobile endpoints how to route with fixed identifier?
 - Link layer, naming, addressing and routing solutions
 - What are the +/- of each?
- Transport
 - Losses can occur due to corruption as well as congestion
 - Impact on TCP?
 - How to fix this → hide it from TCP or change TCP

٩a

Ad Hoc Networks



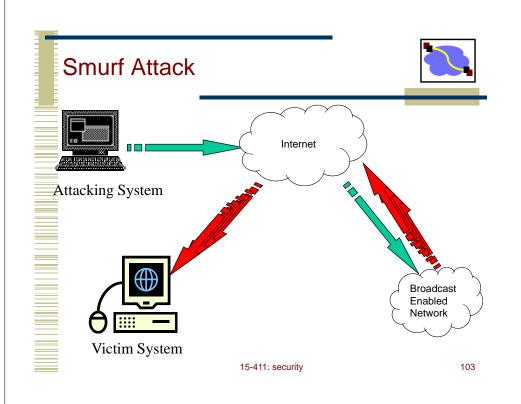
- All the challenges of wireless, plus:
 - No fixed infrastructure
 - Mobility (on short time scales)
 - · Chaotically decentralized
 - Multi-hop!
- Nodes are both traffic sources/sinks and forwarders, no specialized routers
- The biggest challenge: routing

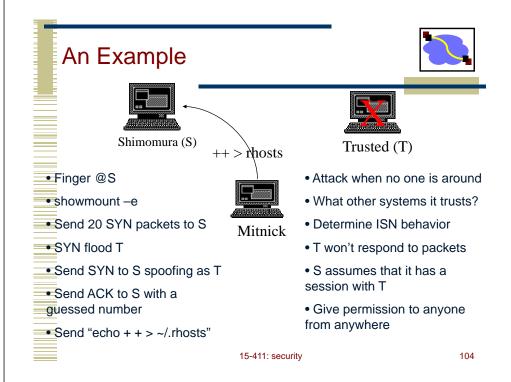

Traditional Routing vs Ad Hoc

- Traditional network:
 - Well-structured
 - ~O(N) nodes & links
 - All links work ~= well

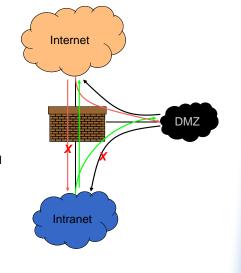
- O(N^2) links but most are bad!
- Topology may be really weird
 - Reflections & multipath cause strange inter
- Change is frequent

Traditional routing fails: DV loops, LS overhead, updates are power hungry, N² links: Instead proposed are: DSDV, AODV, DSR


H Responds to Route Request Source C Destination F


Important Lessons

- Wireless is challenging
 - · Assumptions made for the wired world don't hold
- Ad-hoc wireless networks
 - Need routing protocol but mobility and limited capacity are problems
 - On demand can reduce load; broadcast reduces overhead
- Special case 1 Sensor networks
 - Power is key concern
 - Trade communication for computation
- Special case 2 Vehicular networks
 - No power constraints but high mobility makes routing even harder, geographical routing


102

Typical Firewall Configuration

- Internal hosts can access DMZ and Internet
- External hosts can access DMZ only, not Intranet
- DMZ hosts can access Internet only
- · Advantages?
 - If a service gets compromised in DMZ it cannot affect internal hosts

15-411: security

Sample Firewall Rule

Allow SSH from external hosts to internal hosts

Two rules Inbound and out Client How to know a p Inbound: src-por SYN Outbound: src-p Protocol=TCP SYN/ACK Ack Set? Problems? **ACK**

Rule	Dir	Src Addr	Src Port	Dst Addr	Dst Port	Proto	Ack Set?	Action
SSH-1	In	Ext	> 1023	Int	22	TCP	Any	Allow
SSH-2	Out	Int	22	Ext	> 1023	TCP	Yes	Alow

15-411: security

What do we need for a secure comm channel?

- Authentication (Who am I talking to?)
- Confidentiality (Is my data hidden?)
- Integrity (Has my data been modified?)
- Availability (Can I reach the destination?)

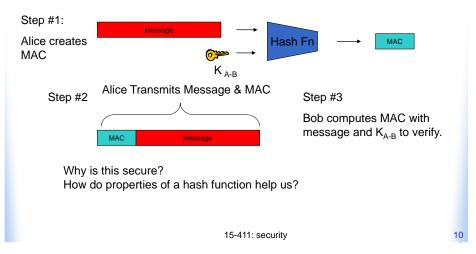
The Great Divide

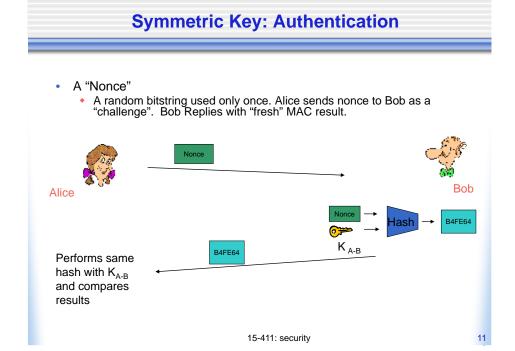
Symmetric Crypto **Asymmetric** Crypto (Private key) (Public key) (E.g., AES) (E.g., RSA)

Shared secret between parties? Yes

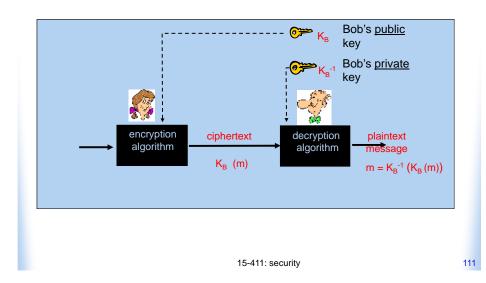
Speed of crypto operations

Fast

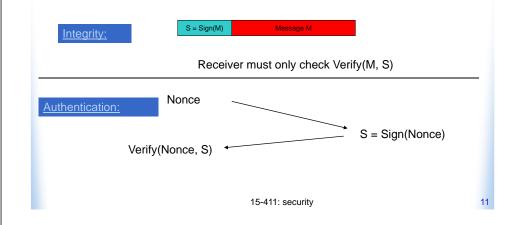

Slow


15-411: security

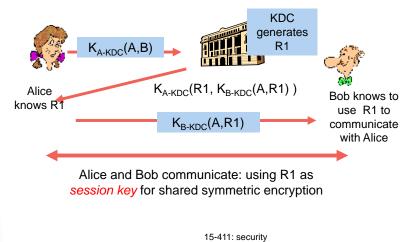
15-411: security


Symmetric Key: Integrity

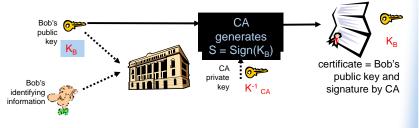
Hash Message Authentication Code (HMAC)



Asymmetric Key: Confidentiality


Asymmetric Key: Integrity & Authentication

 We can use Sign() and Verify() in a similar manner as our HMAC in symmetric schemes.


Key Distribution Center (KDC)

Q: How does KDC allow Bob, Alice to determine shared symmetric secret key to communicate with each other?

Certification Authorities

- Certification authority (CA): binds public key to particular entity, E.
- An entity E registers its public key with CA.
 - E provides "proof of identity" to CA.
 - CA creates certificate binding E to its public key.
 - Certificate contains E's public key AND the CA's signature of E's public key.

15-411: security 1