Lecture 24: Ad-Hoc Wireless Networks
Scenarios and Roadmap

• **Point to point wireless networks (last lecture)**
 • Example: your laptop to CMU wireless
 • Challenges: Poor and variable link quality, hidden and exposed terminals

• **Ad hoc networks (no infrastructure)**
 • Example: military surveillance network
 • Extra challenges: Routing and possible mobility

• **Sensor networks (ad hoc++)**
 • Example: network to monitor temperatures in a volcano
 • Extra challenge: serious resource constraints

• **Vehicular networks (ad hoc+++)**
 • Example: vehicle-2-vehicle game network
 • Extra challenge: extreme mobility
Wireless Challenges (review)

- Interference causes losses, which TCP handles poorly
 - Collisions
 - Multipath interference
 - Environmental (e.g. microwaves)
 - Hidden & exposed terminals
- Contention makes it slow
- Solutions at the Link Layer
 - Local retransmissions
 - RTS/CTS
Ad Hoc Networks

• All the challenges of wireless, plus:
 • No fixed infrastructure
 • Mobility (on short time scales)
 • Chaotically decentralized
 • Multi-hop!
• Nodes are both traffic sources/sinks and forwarders, no specialized routers
• The biggest challenge: routing
Ad Hoc Routing

- Find multi-hop paths through network
 - Adapt to new routes and movement / environment changes
 - Deal with interference and power issues
 - Scale well with # of nodes
 - Localize effects of link changes
Traditional Routing vs Ad Hoc

- **Traditional network:**
 - Well-structured
 - $\sim O(N)$ nodes & links
 - All links work \sim well

- **Ad Hoc network**
 - $O(N^2)$ links - but most are bad!
 - Topology may be really weird
 - Reflections & multipath cause strange interference
 - Change is frequent
Problems Using DV or LS

- DV loops are very expensive
 - Wireless bandwidth \(<\) fiber bandwidth…
- LS protocols have high overhead
- \(N^2\) links cause very high cost
- Periodic updates waste power
- Need fast, frequent convergence
Proposed Protocols

- **Destination-Sequenced Distance Vector (DSDV)**
 - Addresses DV loops
- **Ad Hoc On-Demand Distance Vector (AODV)**
 - Forwarders store route info
- **Dynamic Source Routing (DSR)**
 - Route stored in the packet header

- Let’s look at DSR
DSR

- Source routing keeps changes local
 - Intermediate nodes can be out of date
- On-demand route discovery
 - Don’t need periodic route advertisements

- (Design point: on-demand may be better or worse depending on traffic patterns…)
DSR Components

- **Route discovery**
 - The mechanism by which a sending node obtains a route to destination

- **Route maintenance**
 - The mechanism by which a sending node detects that the network topology has changed and its route to destination is no longer valid
DSR Route Discovery

- Route discovery - basic idea
 - **Source** broadcasts route-request to **Destination**
 - Each node forwards request by adding own address and re-broadcasting
 - Requests propagate outward until:
 - Target is found, or
 - A node that has a route to Destination is found
C Broadcasts Route Request to F
C Broadcasts Route Request to F
H Responds to Route Request
C Transmits a Packet to F
Forwarding Route Requests

- A request is forwarded if:
 - Node doesn’t know the destination
 - Node not already listed in recorded source route (loop avoidance)
 - Node has not seen request with same sequence number (duplicate suppression)
 - IP TTL field may be used to limit scope
- Destination copies route into a Route-reply packet and sends it back to Source
Route Cache

- All source routes learned by a node are kept in Route Cache
 - Reduces cost of route discovery
- If intermediate node receives RR for destination and has entry for destination in route cache, it responds to RR and does not propagate RR further
- Nodes overhearing RR/RP may insert routes in cache
Sending Data

- Check cache for route to destination
- If route exists then
 - If reachable in one hop
 - Send packet
 - Else insert routing header to destination and send
- If route does not exist, buffer packet and initiate route discovery
Discussion

- Source routing is good for on demand routes instead of a priori distribution
- Route discovery protocol used to obtain routes on demand
 - Caching used to minimize use of discovery
- Periodic messages avoided
- But need to buffer packets
- How do you decide between links?
Forwarding Packets is Expensive

- Throughput of 802.11b =~ 11Mbits/s
 - In reality, you can get about 5.
- What is throughput of a chain?
 - A -> B -> C ?
 - A -> B -> C -> D ?
 - Assume minimum power for radios.

- Routing metric should take this into account
ETX Routing metric

- Measure each link’s delivery probability with broadcast probes (& measure reverse)
- \(P(\text{delivery}) = \frac{1}{(df \times dr)} \) (ACK must be delivered too)
- Link ETX = \(\frac{1}{P(\text{delivery})} \)
- Route ETX = sum of link ETX
- (Assumes all hops interfere - not true, but seems to work okay so far)
Capacity of Multi-Hop Network

• Assume N nodes, each wants to talk to everyone else. What total throughput (ignore previous slide to simplify things)
 • O(n) concurrent transmissions. Great! But:
 • Each has length O(sqrt(n)) (network diameter)
 • So each Tx uses up sqrt(n) of the O(n) capacity.
 • Per-node capacity scales as 1/sqrt(n)
 • Yes - it goes down! More time spent Tx’ing other peoples packets…

• But: If communication is local, can do much better, and use cool tricks to optimize
 • Like multicast, or multicast in reverse (data fusion)
 • Hey, that sounds like … a sensor network!
Sensor Networks – Smart Devices

- First introduced in late 90’s by groups at UCB/UCLA/USC
- Small, resource limited devices
 - CPU, disk, power, bandwidth, etc.
- Simple scalar sensors – temperature, motion
- Single domain of deployment
 - farm, battlefield, bridge, rain forest
- for a targeted task
 - find the tanks, count the birds, monitor the bridge
- Ad-hoc wireless network
Sensor Example – Smart-Dust

- Hardware
 - UCB motes
 - 4 MHz CPU
 - 4 kB data RAM
 - 128 kB code
 - 50 kb/sec 917 Mhz radio
 - Sensors: light, temp.,
 - Sound, etc.,
 - And a battery.
Sensors, Power and Radios

- Limited battery life drives most goals
- Radio is most energy-expensive part.
- 800 instructions per bit. 200,000 instructions per packet. (!)
- That’s about one message per second for ~2 months if no CPU.
- Listening is expensive too. :(

Sensor Nets Goals

- Replace communication with computation
- Turn off radio receiver as often as possible
- Keep little state (limited memory).
Power

• Which uses less power?
 • Direct sensor -> base station Tx
 • Total Tx power: distance^2
 • Sensor -> sensor -> sensor -> base station?
 • Total Tx power: n * (distance/n)^2 =~ d^2 / n
 • Why? Radios are omnidirectional, but only one direction matters. Multi-hop approximates directionality.

• Power savings often makes up for multi-hop capacity
 • These devices are *very* power constrained!

• Reality: Many systems don’t use adaptive power control. This is active research, and fun stuff.
Example: Aggregation

- Find average temperature in GHC 8th floor.
 - Naïve: Flood query, let a collection point compute avg.
 - Huge overload near the CP. Lots of loss, and local nodes use lots of energy!

- Better:
 - Take local avg. first, & forward that.
 - Send average temp + # of samples
 - Aggregation is the key to scaling these nets.

- The challenge: How to aggregate.
 - How long to wait?
 - How to aggregate complex queries?
 - How to program?
Beyond Sensors – Vehicular Ad-Hoc Networks

- Aggregation is not everything
- Power and computation constraints limiting
- What can we use as highly mobile and powerful ad hoc network nodes? Cars!
- Potential applications for VANETs
 - Collision avoidance
 - Virtual traffic signals
 - (Semi-)Autonomous driving
 - Infotainment
Vehicular Networks – Challenges?

- Extreme mobility
 - DSR won’t work if the routes keep changing
- Scale
 - Possibly the largest ever ad-hoc networks
- Topology
 - Deployment/density not controlled by designer (e.g., highway vs city)
 - Gradual deployment (new cars equipped from the factory in the near future)
VANET Routing – Simple case

- **Topology based routing**
 - DSR won’t work because the nodes keep changing
 - Can form clusters and route through cluster heads (LORA_CBF)

- **Geographical routing**
 - Use relative position between node, source and destination to, on the fly, decide whether to forward or not (GPSR)
VANET Routing – General case

• Cities, rural areas
 • Topology-based routing fails, geographical routing harder
 • Local minima/network holes: no neighbor is closer to the destination than we are
 • Greedy Perimeter Stateless Routing (GPSR) routes around the perimeter
 • What we would really want
 • To have a density map of the network to help us choose forwarders
VANET Routing – General case

- Learning about node density in VANETs
 - Use road maps and statistical traffic information (A-CAR)
 - Coarse-grained
 - Local, neighbor based estimation
 - Local optimum != global optimum
 - Online, large scale estimation
 - High overhead
- No perfect solution – open research topic
Important Lessons

- Wireless is challenging
 - Assumptions made for the wired world don’t hold
- Ad-hoc wireless networks
 - Need routing protocol but mobility and limited capacity are problems
 - On demand can reduce load; broadcast reduces overhead
- Special case 1 – Sensor networks
 - Power is key concern
 - Trade communication for computation
- Special case 2 – Vehicular networks
 - No power constraints but high mobility makes routing even harder, geographical routing