

15-441: Computer Networking

Lecture 24: Ad-Hoc Wireless Networks

Scenarios and Roadmap

- Point to point wireless networks (last lecture)
 - Example: your laptop to CMU wireless
 - Challenges: Poor and variable link quality, hidden and exposed terminals
- Ad hoc networks (no infrastructure)
 - Example: military surveillance network
 - Extra challenges: Routing and possible mobility
- Sensor networks (ad hoc++)
 - Example: network to monitor temperatures in a volcano
 - Extra challenge: serious resource constraints
- Vehicular networks (ad hoc+++)
 - Example: vehicle-2-vehicle game network
 - Extra challenge: <u>extreme</u> mobility

- Interference causes losses, which TCP handles poorly
 - Collisions
 - Multipath interference
 - Environmental (e.g. microwaves)
 - Hidden & exposed terminals
- Contention makes it slow
- Solutions at the Link Layer
 - Local retransmissions
 - RTS/CTS

Ad Hoc Networks

- All the challenges of wireless, plus:
 - No fixed infrastructure
 - Mobility (on short time scales)
 - Chaotically decentralized
 - Multi-hop!
- Nodes are both traffic sources/sinks and forwarders, no specialized routers
- The biggest challenge: routing

- Find multi-hop paths through network
 - Adapt to new routes and movement / environment changes
 - Deal with interference and power issues
 - Scale well with # of nodes
 - Localize effects of link changes

Traditional Routing vs Ad Hoc

- Traditional network:
 - Well-structured
 - ~O(N) nodes & links
 - All links work ~= well

- O(N²) links but most are bad!
- Topology may be really weird
 - Reflections & multipath cause strange interference
- Change is frequent

- DV loops are very expensive
 - Wireless bandwidth << fiber bandwidth...
- LS protocols have high overhead
- N^2 links cause very high cost
- Periodic updates waste power
- Need fast, frequent convergence

Proposed Protocols

- Destination-Sequenced Distance Vector (DSDV)
 - Addresses DV loops
- Ad Hoc On-Demand Distance Vector (AODV)
 - Forwarders store route info
- Dynamic Source Routing (DSR)
 - Route stored in the packet header
- Let's look at DSR

DSR

- Source routing keeps changes local
 - Intermediate nodes can be out of date
- On-demand route discovery
 - Don't need periodic route advertisements

 (Design point: on-demand may be better or worse depending on traffic patterns...)

- Route discovery
 - The mechanism by which a sending node obtains a route to destination
- The mechanism by voltains a route to defected.
 Route maintenance
 The mechanism by voltains and its route to desting and its route to desting and its route. The mechanism by which a sending node detects that the network topology has changed and its route to destination is no longer valid

- Route discovery basic idea
 - Source broadcasts route-request to Destination
 - Each node forwards request by adding own address and re-broadcasting
 - Requests propagate outward until:
 - Target is found, or
 - A node that has a route to Destination is found

- A request is forwarded if:
 - Node doesn't know the destination
 - Node not already listed in recorded source route (loop avoidance)
 - Node has not seen request with same sequence number (duplicate suppression)
 - IP TTL field may be used to limit scope
- Destination copies route into a Route-reply packet and sends it back to Source

Route Cache

- All source routes learned by a node are kept in Route Cache
 - Reduces cost of route discovery
- If intermediate node receives RR for destination and has entry for destination in route cache, it responds to RR and does not propagate RR further
- Nodes overhearing RR/RP may insert routes in cache

- Check cache for route to destination
- If route exists then
 - If reachable in one hop
 - Send packet
 - Else insert routing header to destination and send
- If route does not exist, buffer packet and initiate route discovery

Discussion

- Source routing is good for on demand routes instead of a priori distribution
- Route discovery protocol used to obtain routes on demand
 - Caching used to minimize use of discovery
- Periodic messages avoided
- But need to buffer packets
- How do you decide between links?

Forwarding Packets is Expensive

- Throughput of 802.11b =~ 11Mbits/s
 - In reality, you can get about 5.
- What is throughput of a chain?
 - A -> B -> C
 - A -> B -> C -> D ?
 - Assume minimum power for radios.
- Routing metric should take this into account

- Measure each link's delivery probability with broadcast probes (& measure reverse)
- P(delivery) = 1 / (df * dr) (ACK must be delivered too)
- Link ETX = 1 / P(delivery)
 - Route ETX = sum of link ETX
 - (Assumes all hops interfere not true, but seems to work okay so far)

Capacity of Multi-Hop Network

- Assume N nodes, each wants to talk to everyone else. What total throughput (ignore previous slide to simplify things)
 - O(n) concurrent transmissions. Great! But:
 - Each has length O(sqrt(n)) (network diameter)
 - So each Tx uses up sqrt(n) of the O(n) capacity.
 - Per-node capacity scales as 1/sqrt(n)
 - Yes it goes down! More time spent Tx'ing other peoples packets...
- But: If communication is local, can do much better, and use cool tricks to optimize
 - Like multicast, or multicast in reverse (data fusion)
 - Hey, that sounds like ... a sensor network!

Sensor Networks – Smart Devices

- First introduced in late 90's by groups at UCB/ UCLA/USC
- Small, resource limited devices
 - CPU, disk, power, bandwidth, etc.
- Simple scalar sensors temperature, motion
- Single domain of deployment
 - farm, battlefield, bridge, rain forest
- for a targeted task
 - find the tanks, count the birds, monitor the bridge
- Ad-hoc wireless network

Sensor Example – Smart-Dust

- Hardware
 - UCB motes
 - 4 MHz CPU
 - 4 kB data RAM
 - 128 kB code
 - 50 kb/sec 917 Mhz radio
 - Sensors: light, temp.,
 - Sound, etc.,
 - And a battery.

- Limited battery life drives most goals
- Radio is most energy-expensive part.
- 800 instructions per bit. 200,000 instructions per packet. (!)
- That's about one message per second for ~2 months if no CPU.
- Listening is expensive too. :(

- Replace communication with computation
- Turn off radio receiver as often as possible
- Keep little state (limited memory).

Power

- Which uses less power?
 - Direct sensor -> base station Tx
 - Total Tx power: distance²
 - Sensor -> sensor -> base station?
 - Total Tx power: n * (distance/n) ^2 =~ d^2 / n

- Power savings often makes up for multi-hop capacity
 - These devices are *very* power constrained!
- Reality: Many systems don't use adaptive power control.
 This is active research, and fun stuff.

Example: Aggregation

- Find average temperature in GHC 8th floor.
 - Naïve: Flood query, let a collection point compute avg.
 - Huge overload near the CP. Lots of loss, and local nodes use lots of energy!
- Better:
 - Take local avg. first, & forward that.
 - Send average temp + # of samples
 - Aggregation is the key to scaling these nets.
- The challenge: How to aggregate.
 - How long to wait?
 - How to aggregate complex queries?
 - How to program?

Beyond Sensors – Vehicular Ad-Hoc Networks

- Aggregation is not everything
- Power and computation constraints limiting
- What can we use as highly mobile and powerful ad hoc network nodes? <u>Cars!</u>
- Potential applications for VANETs
 - Collision avoidance
 - Virtual traffic signals
 - (Semi-)Autonomous driving
 - Infotainment

Vehicular Networks – Challenges?

- Extreme mobility
 - DSR won't work if the routes keep changing
- Scale
 - Possibly the largest ever ad-hoc networks
- Topology
 - Deployment/density not controlled by designer (e.g., highway vs city)
 - Gradual deployment (new cars equipped from the factory in the near future)

VANET Routing – Simple case

- Topology based routing
 - DSR won't work because the nodes keep changing
 - Can form clusters and route through cluster heads (LORA_CBF)
- Geographical routing
 - Use relative position between node, source and destination to, on the fly, decide whether to forward or not (GPSR)

- Cities, rural areas
 - Topology-based routing fails, geographical routing harder
 - Local minima/network holes: no neighbor is closer to the destination than we are
 - Greedy Perimeter Stateless Routing (GPSR) routes around the perimeter
 - What we would really want
 - To have a density map of the network to help us choose forwarders

VANET Routing – General case

- Learning about node density in VANETs
 - Use road maps and statistical traffic information (A-CAR)
 - Coarse-grained
 - Local, neighbor based estimation
 - Local optimum != global optimum
 - Online, large scale estimation
 - High overhead
- No perfect solution open research topic

Important Lessons

- Wireless is challenging
 - Assumptions made for the wired world don't hold
- Ad-hoc wireless networks
 - Need routing protocol but mobility and limited capacity are problems
 - On demand can reduce load; broadcast reduces overhead
- Special case 1 Sensor networks
 - Power is key concern
 - Trade communication for computation
- Special case 2 Vehicular networks
 - No power constraints but high mobility makes routing even harder, geographical routing