
15-441 Computer Networking
Caching, CDN, Consistent Hashing, P2P

Web history

• 1945: Vannevar Bush, “As we may think”, Atlantic Monthly, July,
1945.

• describes the idea of a distributed hypertext system.
• a “memex” that mimics the “web of trails” in our• a memex that mimics the web of trails in our

minds.
• 1989: Tim Berners-Lee (CERN) writes internal proposal to develop

a distributed hypertext system

• connects “a web of notes with links”.
• intended to help CERN physicists in large projects• intended to help CERN physicists in large projects

share and manage information
• 1990: Tim BL writes graphical browser for Next machines.

215-441 S'10 Lecture 21: CDN/Hashing/P2P

Web history (cont)

• 1992
• NCSA server released
• 26 WWW servers worldwide

• 1993
• Marc Andreessen releases first version of NCSA Mosaic Mosaic

version released for (Windows, Mac, Unix).
• Web (port 80) traffic at 1% of NSFNET backbone traffic.(p)
• Over 200 WWW servers worldwide.

• 1994

Andreessen and colleagues leave NCSA to form "Mosaic• Andreessen and colleagues leave NCSA to form "Mosaic
Communications Corp" (Netscape).

315-441 S'10 Lecture 21: CDN/Hashing/P2P

Typical Workload (Web Pages)

• Multiple (typically small) objects per page
• File sizes

• Heavy-tailed
f• Pareto distribution for tail

• Lognormal for body of distribution

• Embedded referencesbedded e e e ces
• Number of embedded objects also pareto

Pr(X>x) = (x/xm)-k
•Lots of small objects

• This plays havoc with performance. Why?
• Solutions?

j
means & TCP
•3-way handshake
•Lots of slow starts

415-441 S'10 Lecture 21: CDN/Hashing/P2P

Lots of slow starts
•Extra connection state

Web Proxy Caches

• User configures browser: Web
accesses via cache

• Browser sends all HTTP Proxy

origin
server

Browser sends all HTTP
requests to cache
• Object in cache: cache

returns object
client

Proxy
server

• Else cache requests object
from origin server, then
returns object to client

client
origin
server

5

server

15-441 S'10

No Caching Example (1)

Assumptions
• Average object size = 100,000 bits originAverage object size 100,000 bits
• Avg. request rate from institution’s

browser to origin servers = 15/sec
• Delay from institutional router to

origin
servers

public
Internety

any origin server and back to router
= 2 sec

Consequences

Internet

1 5 Mb• Utilization on LAN = 15%
• Utilization on access link = 100%
• Total delay = Internet delay + access

delay + LAN delay
institutional

network 10 Mbps LAN

1.5 Mbps
access link

delay LAN delay
= 2 sec + minutes + milliseconds

e o 10 Mbps LAN

615-441 S'10

No Caching Example (2)

Possible solution
• Increase bandwidth of access link originIncrease bandwidth of access link

to, say, 10 Mbps
• Often a costly upgrade

origin
servers

public
Internet

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 15%

Internet

10 Mb• Total delay = Internet delay + access
delay + LAN delay

= 2 sec + msecs + msecs institutional
network 10 Mb LAN

10 Mbps
access link

network 10 Mbps LAN

715-441 S'10

W/Caching Example (3)

Install cache
S hit t i 4 origin• Suppose hit rate is .4

Consequence
• 40% requests will be satisfied almost

immediately (say 10 msec)

origin
servers

public
Internetimmediately (say 10 msec)

• 60% requests satisfied by origin server
• Utilization of access link reduced to 60%,

resulting in negligible delays

Internet

1 5 Mb• Weighted average of delays
= .6*2 sec + .4*10msecs < 1.3 secs

institutional
network 10 Mbps LAN

1.5 Mbps
access link

e o 10 Mbps LAN

8

institutional
cache

15-441 S'10

HTTP Caching

• Clients often cache documents
• Challenge: update of documents
• If-Modified-Since requests to check

• HTTP 0 9/1 0 used just dateHTTP 0.9/1.0 used just date
• HTTP 1.1 has an opaque “entity tag” (could be a file signature,

etc.) as well
• When/how often should the original be checked forWhen/how often should the original be checked for

changes?
• Check every time?

C ? ? ?• Check each session? Day? Etc?
• Use Expires header

• If no Expires, often use Last-Modified as estimate

9

p ,

15-441 S'10 Lecture 21: CDN/Hashing/P2P

Example Cache Check Request

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If None Match: "7a11f 10ed 3a75ae4a"If-None-Match: "7a11f-10ed-3a75ae4a"
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT

5.0))
Host: www.intel-iris.net
Connection: Keep-Alive

1015-441 S'10 Lecture 21: CDN/Hashing/P2P

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1

O SSL/0 9 5 DAV/1 0 2 PHP/4 0 1 l2 d l/1 24OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Connection: Keep-Alive
Keep-Alive: timeout=15 max=100Keep-Alive: timeout=15, max=100
ETag: "7a11f-10ed-3a75ae4a"

1115-441 S'10 Lecture 21: CDN/Hashing/P2P

Problems

• Over 50% of all HTTP objects are uncacheable – why?
N t il l bl• Not easily solvable
• Dynamic data stock prices, scores, web cams
• CGI scripts results based on passed parameters

• Obvious fixes
• SSL encrypted data is not cacheable

• Most web clients don’t handle mixed pages well many generic
objects transferred with SSLobjects transferred with SSL

• Cookies results may be based on passed data
• Hit metering owner wants to measure # of hits for revenue, etc.

What will be the end result?• What will be the end result?

1215-441 S'10 Lecture 21: CDN/Hashing/P2P

Caching Proxies – Sources for Misses

• Capacity
• How large a cache is necessary or equivalent to infinite
• On disk vs. in memory typically on disk

• Compulsoryp y
• First time access to document
• Non-cacheable documents

• CGI-scripts• CGI-scripts
• Personalized documents (cookies, etc)
• Encrypted data (SSL)

• Consistency• Consistency
• Document has been updated/expired before reuse

• Conflict

13

• No such misses

15-441 S'10 Lecture 21: CDN/Hashing/P2P

Content Distribution Networks (CDNs)()

• The content providers are the CDN
customers

origin server
customers.

Content replication
• CDN company installs hundreds of

CDN servers throughout Internet

in North America

CDN servers throughout Internet
• Close to users

• CDN replicates its customers’ content
in CDN servers When provider

CDN distribution node

in CDN servers. When provider
updates content, CDN updates
servers

CDN server
in S America CDN server

CDN server

14

in S. America CDN server
in Europe

in Asia

15-441 S'10

htt // k i /ht l/t h l / i/ /i d ht l

15-441 S'10 15

http://www.akamai.com/html/technology/nui/news/index.html

Content Distribution Networks &
Server SelectionServer Selection

• Replicate content on many servers
• Challenges

• How to replicate content
• Where to replicate content• Where to replicate content
• How to find replicated content
• How to choose among know replicas
• How to direct clients towards replica

1615-441 S'10 Lecture 21: CDN/Hashing/P2P

Server Selection

• Which server?
• Lowest load to balance load on servers
• Best performance to improve client performance

G ? ? ? ?• Based on Geography? RTT? Throughput? Load?

• Any alive node to provide fault tolerance
• How to direct clients to a particular server?• How to direct clients to a particular server?

• As part of routing anycast, cluster load balancing
• Not covered

• As part of application HTTP redirect
• As part of naming DNS

1715-441 S'10 Lecture 21: CDN/Hashing/P2P

Application Based

• HTTP supports simple way to indicate that Web page has moved
(30X responses)(30X responses)

• Server receives Get request from client
• Decides which server is best suited for particular client and object

Returns HTTP redirect to that server• Returns HTTP redirect to that server
• Can make informed application specific decision
• May introduce additional overhead

multiple connection setup name lookups etcmultiple connection setup, name lookups, etc.
• While good solution in general, but…

• HTTP Redirect has some design flaws – especially with current
browsersbrowsers

1815-441 S'10 Lecture 21: CDN/Hashing/P2P

Naming Based

• Client does name lookup for service
• Name server chooses appropriate server address

• A-record returned is “best” one for the client
• What information can name server base decision on?

• Server load/location must be collected
• Information in the name lookup request• Information in the name lookup request

• Name service client typically the local name server for client

1915-441 S'10 Lecture 21: CDN/Hashing/P2P

How Akamai Works

• Clients fetch html document from primary server
• E.g. fetch index.html from cnn.com

• URLs for replicated content are replaced in html
• E.g. replaced with

• Client is forced to resolve aXYZ g akamaitech net• Client is forced to resolve aXYZ.g.akamaitech.net
hostname

2015-441 S'10 Lecture 21: CDN/Hashing/P2P

How Akamai Works

• How is content replicated?
• Akamai only replicates static content (*)
• Modified name contains original file name
• Akamai server is asked for content• Akamai server is asked for content

• First checks local cache
• If not in cache, requests file from primary server and

caches file

* (At least, the version we’re talking about today. Akamai actually lets sites write (, g y y
code that can run on Akamai’s servers, but that’s a pretty different beast)

2115-441 S'10 Lecture 21: CDN/Hashing/P2P

How Akamai Works

• Root server gives NS record for akamai.net
• Akamai.net name server returns NS record for

g.akamaitech.net
• Name server chosen to be in region of client’s nameName server chosen to be in region of client s name

server
• TTL is large

G k it h t h i i• G.akamaitech.net nameserver chooses server in region
• Should try to chose server that has file in cache - How

to choose?
• Uses aXYZ name and hash
• TTL is small why?

2215-441 S'10 Lecture 21: CDN/Hashing/P2P

How Akamai Works

cnn.com (content provider) DNS root server Akamai server

11
12

Get foo.jpg

1 2 3 Akamai high-level

11
Get
index.
html 5

4
DNS server

Akamai low-level DNS
server

Nearby matching

6
7

8

End user

Nearby matching
Akamai server

8

9

10

23

End-user 10
Get /cnn.com/foo.jpg

15-441 S'10 Lecture 21: CDN/Hashing/P2P

Akamai – Subsequent Requests

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level

Get
index.
html 1 2 g

DNS server

Akamai low-level DNS
server

7

8 Nearby matching8

9

10

Nearby matching
Akamai server

24

End-user 10Get
/cnn.com/foo.jpg

15-441 S'10 Lecture 21: CDN/Hashing/P2P

Simple Hashing

• Given document XYZ, we need to choose a server to use
• Suppose we use modulo
• Number servers from 1…n

• Place document XYZ on server (XYZ mod n)
• What happens when a servers fails? n n-1

• Same if different people have different measures of n• Same if different people have different measures of n

• Why might this be bad?

2515-441 S'10 Lecture 21: CDN/Hashing/P2P

Consistent Hash

• “view” = subset of all hash buckets that are visible
• Desired features

• Smoothness – little impact on hash bucket contents
h b k t dd d/ dwhen buckets are added/removed

• Spread – small set of hash buckets that may hold an
object regardless of views objec ega d ess o e s

• Load – across all views # of objects assigned to hash
bucket is small

15-441 S'10 26Lecture 21: CDN/Hashing/P2P

Consistent Hash – Example

• Construction
A i h f C h h b k t t

0
• Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n. 412

Bucket

14

• Map object to random position on
unit interval

• Hash of object = closest bucket 8
• Monotone addition of bucket does not cause

movement between existing buckets

Hash of object closest bucket 8

• Spread & Load small set of buckets that lie
near object
B l b k t i ibl f l

15-441 S'10 27

• Balance no bucket is responsible for large
number of objects

Lecture 21: CDN/Hashing/P2P

Consistent Hashing

• Main idea:
• map both keys and nodes to the same (metric) identifier space
• find a “rule” how to assign keys to nodes

Ring is one option.

28

Consistent Hashing

• The consistent hash function assigns each node and key
an m-bit identifier using SHA-1 as a base hash function

N d id tifi SHA 1 h h f IP dd• Node identifier: SHA-1 hash of IP address

• Key identifier: SHA-1 hash of key• Key identifier: SHA-1 hash of key

29

Identifiers

• m bit identifier space for both keys and nodes• m bit identifier space for both keys and nodes

• Key identifier: SHA-1(key)

Key=“LetItBe” ID=60SHA-1

N d id tifi SHA 1(IP dd)
IP=“198.10.10.1” ID=123SHA-1

• Node identifier: SHA-1(IP address)

•How to map key IDs to node IDs?

30

Consistent Hashing Example

Rule: A key is stored at its successor: node with next higher or equal ID

K50IP=“198.10.10.1”

N123 K20

N32
Circular 7-bit

ID spaceK101

N90 Key=“LetItBe”

31

N90 K60
Key LetItBe

Consistent Hashing Properties

• Load balance: all nodes receive roughly the same
number of keys

• For N nodes and K keys, with high probability

• each node holds at most (1+ε)K/N keys
• (provided that K is large enough compared to N)(p g g p)

32

Consistent Hash – Example

• Construction
A i h f C h h b k t t

0
• Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n. 412

Bucket

14

• Map object to random position on
unit interval

• Hash of object = closest bucket 8
• Monotone addition of bucket does not cause

movement between existing buckets

Hash of object closest bucket 8

• Spread & Load small set of buckets that lie
near object
B l b k t i ibl f l

15-441 S'10 33

• Balance no bucket is responsible for large
number of objects

Lecture 21: CDN/Hashing/P2P

Load Balance

• Redirector knows all CDN server Ids
• Can track approximate load (or delay)
• To balance load:

• Wi = Hash(URL, Si) for all I
• Sort Wi

• From high to low find first server with low enough load• From high to low find first server with low enough load

• How should “load” be measured?How should load be measured?

15-441 S'10 34Lecture 21: CDN/Hashing/P2P

Consistent Hashing not just for CDN

• Finding a nearby server for an object in a CDN uses
centralized knowledge.

• Consistent hashing can also be used in a distributed
settingsetting

• P2P systems like BitTorrent, e.g., project 3, need a way of
finding files.

• Consistent Hashing to the rescue.

15-441 S'10 35Lecture 21: CDN/Hashing/P2P

Chord: Design Goals

• Load balance: Chord acts as a distributed hash
function spreading keys evenly over the nodesfunction, spreading keys evenly over the nodes.

• Decentralization: Chord is fully distributed: no node is
i t t th thmore important than any other.

• Scalability: The cost of a Chord lookup grows as the
l f h b f d llog of the number of nodes, so even very large
systems are feasible.

• Availability: Chord automatically adjusts its internal
tables to reflect newly joined nodes as well as node
failures, ensuring that the node responsible for a key
can al a s be fo nd

36

can always be found.

Lookups strategies

• Every node knows its successor in the ring
R i O(N) l k

0

• Requires O(N) lookups

N123 Hash(“LetItBe”) = K60

N10
Where is “LetItBe”?

N32

“N90 has K60”

37

N90 N55K60

Reducing Lookups: Finger Tablesg p g

• Each node knows m other nodes in the ring (it has m fingers)
• Increase distance exponentially
• Finger i points to successor of n+2i-1 i=1..m

N120
N112 N16

80 + 25 80 + 26

N96

80 + 2 80 + 2

80 + 22
80 + 23

80 + 24

38
N80
80 + 20

80 + 21

Faster Lookups

• Lookups are O(log N) hops N32 finger table

N10

N5

N110

g
F0 points to successor(32+20) = 60
F1 points to successor(32+21) = 60
F2 points to successor(32+22) = 60
F3 points to successor(32+23) = 60

N20
N110

N99

K19

F3 points to successor(32 2) 60
F4 points to successor(32+24) = 60
F5 points to successor(32+25) = 80
F6 points to successor(32+26) = 99

N32

Lookup(K19)
Look for a node
id tifi i th fi

N80

p() identifier in the finger
table that is less then the
key identifier and closest

39
N60 in the ID space to the

key identifier

Summary of Performance Results

• Efficient: O(log N) messages per lookup

• Scalable: O(log N) state per node

• Robust: survives massive membership changes

40

Joining the Ring

• Three step process
• Initialize all fingers of new node
• Update fingers of existing nodes
• Transfer keys from successor to new node

• Two invariants to maintain• Two invariants to maintain
• Each node’s finger table is correctly maintained
• successor(k) is responsible for k (objects stored insuccessor(k) is responsible for k (objects stored in

correct place)

41

Join: Initialize New Node’s Finger Table

• Locate any node p in the ring

Join: Initialize New Node s Finger Table

• Ask node p to lookup fingers of new node

k ()1. Lookup(37,38,40,…,100,164)

N5

N36
N20

N99

N40

N80

42
N60

N80

Join: Update Fingers of Existing Nodesp g g

• New node calls update function on existing nodesp g

n becomes the ith fingerprint

N5

g p
of

node p if p precedes n by at

N36

N20
N99

least 2i-1 and ith finger of
node p

succeeds nN36

N40
N80

succeeds n.

Update in O(log2N) expected

43
N60

N80 p (g) p
messages

Join: Transfer Keys

• Only keys in the range are transferred y y g

N5

Copy keys 21 36
N36

N20
N99

K30
Copy keys 21..36
from N40 to N36K30

K38
N40

N80
K38

44

N60

Handling Failures

• Problem: Failures could cause incorrect lookup

N120

p
• Solution: Fallback: keep track of a list of immediate

successors
N120

N102

N10

N102

N85 Lookup(85)

N80

N85 Lookup(85)

45

Handling Failures

U li t• Use successor list
• Each node knows r immediate successors
• After failure will know first live successor• After failure, will know first live successor
• Correct successors guarantee correct lookups

• Guarantee with some probability
• Can choose r to make probability of lookup failure

arbitrarily small

46

Joining/Leaving overhead

• When a node joins (or leaves) the network, only an
fraction of the keys are moved to a different location.

• For N nodes and K keys, with high probability
• when node N+1 joins or leaves O(K/N) keys change• when node N+1 joins or leaves, O(K/N) keys change

hands, and only to/from node N+1

47

Summary

• Caching improves web performance
• Caching only at client is only partial solution
• Content Delivery Networks move data closer to user,

i t i i t b l l dmaintain consistency, balance load
• Consistent Caching maps keys AND buckets into the

same spacesa e space
• Consistent caching can be fully distributed, useful in P2P

systems using structured overlays

15-441 S'10 48Lecture 21: CDN/Hashing/P2P

