

Altering the Addressing Model

- Original IP Model
 - Every host has a unique IP address
- Implications
 - Any host can find any other host
 - · Any host can communicate with any other host
 - Any host can act as a server
 - · Just need to know host ID and port number
- No Secrecy or Authentication
 - Packet traffic observable by routers and by LANconnected hosts
 - · Possible to forge packets
 - · Use invalid source address

Properties of Firewalls with NAT

- Advantages
 - Hides IP addresses used in internal network
 - · Easy to change ISP: only NAT box needs to have IP address
 - · Fewer registered IP addresses required
 - Basic protection against remote attack
 - · Does not expose internal structure to outside world
 - Can control what packets come in and out of system
 - Can reliably determine whether packet from inside or outside
- Disadvantages
 - Contrary to the "open addressing" scheme envisioned for IP addressing
 - Hard to support peer-to-peer applications
 - Why do so many machines want to serve port 1214?

17

NAT Considerations

- · NAT has to be consistent during a session.
 - Set up mapping at the beginning of a session and maintain it during the session
 - Recall 2nd level goal 1 of Internet: Continue despite loss of networks or gateways
 - What happens if your NAT reboots?
 - · Recycle the mapping that the end of the session
 - · May be hard to detect
- NAT only works for certain applications.
 - Some applications (e.g. ftp) pass IP information in payload
 - Need application level gateways to do a matching translation
 - Breaks a lot of applications.
 - Example: Let's look at FTP
- NAT is loved and hated
- Breaks many apps (FTP)
- Inhibits deployment of new applications like p2p (but so do firewalls!)
- + Little NAT boxes make home networking simple.
- + Saves addresses. Makes allocation simple.

18

Outline

- NAT
- Tunneling and VPNs
- IPv6

19

IPv6

- "Next generation" IP.
- Most urgent issue: increasing address space.
 - 128 bit addresses
- Simplified header for faster processing:
 - No checksum (why not?)
 - No fragmentation (?)
- Support for guaranteed services: priority and flow id
- Options handled as "next header"
 - reduces overhead of handling options

V/Pr Flow label

Length Next Hop L

Source IP address

Destination IP address

IPv6 Addressing

- Do we need more addresses? Probably, long term
 - · Big panic in 90s: "We're running out of addresses!"
 - Big worry: Devices. Small devices. Cell phones, toasters. everything.
- 128 bit addresses provide space for structure (good!)
 - · Hierarchical addressing is much easier
 - Assign an entire 48-bit sized chunk per LAN use Ethernet
 - Different chunks for geographical addressing, the IPv4 address space.
 - Perhaps help clean up the routing tables just use one huge chunk per ISP and one huge chunk per customer.

Registry Provider Subscriber

21

IPv6 Autoconfiguration

- Serverless ("Stateless"). No manual config at all.
 - Only configures addressing items. NOT other host things
 - If you want that, use DHCP.
- Link-local address
 - 1111 1110 10 :: 64 bit interface ID (usually from Ethernet addr)
 - (fe80::/64 prefix)
 - Uniqueness test ("anyone using this address?")
 - Router contact (solicit, or wait for announcement)
 - · Contains globally unique prefix
 - Usually: Concatenate this prefix with local ID → globally unique IPv6 ID
- DHCP took some of the wind out of this, but nice for "zeroconf" (many OSes now do this for both v4 and v6)

22

IPv6 Cleanup - Router-friendly

- Common case: Switched in silicon ("fast path")
- Weird cases: Handed to CPU ("slow path", or "process") switched")
 - Typical division:
 - · Fast path: Almost everything
 - Slow path:
 - Fragmentation
 - TTL expiration (traceroute)
 - IP option handling
 - Slow path is evil in today's environment
 - "Christmas Tree" attack sets weird IP options, bits, and overloads
 - · Developers can't (really) use things on the slow path for data flow. · If it became popular, they'd be in the soup!
- Other speed issue: Touching data is expensive. Designers would like to minimize accesses to packet during forwarding.

IPv6 Header Cleanup

- Different options handling
- IPv4 options: Variable length header field. 32 different options.
 - · Rarely used
 - No development / many hosts/routers do not support
 - Worse than useless: Packets w/options often even get dropped!
 - Processed in "slow path".
- IPv6 options: "Next header" pointer
 - · Combines "protocol" and "options" handling
 - Next header: "TCP", "UDP", etc.
 - · Extensions header: Chained together
 - · Makes it easy to implement host-based options
 - One value "hop-by-hop" examined by intermediate routers
 - Things like "source route" implemented only at intermediate hops

IPv6 Header Cleanup

- No checksum
- · Why checksum just the IP header?
 - Efficiency: If packet corrupted at hop 1, don't waste b/w transmitting on hops 2..N.
 - Useful when corruption frequent, b/w expensive
 - Today: Corruption rare, b/w cheap

25

IPv6 Fragmentation Cleanup

IPv4:

Router must fragment

- IPv6:
 - Discard packets, send ICMP "Packet Too Big"
 - Similar to IPv4 "Don't Fragment" bit handling
 - · Sender must support Path MTU discovery
 - · Receive "Packet too Big" messages and send smaller packets
 - Increased minimum packet size
 - Link must support 1280 bytes;
 - 1500 bytes if link supports variable sizes
- · Reduced packet processing and network complexity.
- Increased MTU a boon to application writers
- Hosts can still fragment using fragmentation header. Routers don't deal with it any more.

26

Migration from IPv4 to IPv6

- Interoperability with IP v4 is necessary for gradual deployment.
- · Alternative mechanisms:
 - Dual stack operation: IP v6 nodes support both address types
 - Translation:
 - · Use form of NAT to connect to the outside world
 - NAT must not only translate addresses but also translate between IPv4 and IPv6 protocols
 - <u>Tunneling</u>: tunnel IP v6 packets through IP v4 clouds

7

Outline

- NAT
- IPv6
- Tunneling and VPNs

Tunneling Applications

- Virtual private networks.
 - · Connect subnets of a corporation using IP tunnels
 - · Often combined with IP Sec
- · Support for new or unusual protocols.
 - Routers that support the protocols use tunnels to "bypass" routers that do not support it
 - · E.g. multicast
- Force packets to follow non-standard routes.
 - · Routing is based on outer-header
 - · E.g. mobile IP

33

Supporting VPN by Tunneling F: Firewall R: Router H: Host Occupt Appears as if two hosts connected directly Usage in VPN Create tunnel between road warrior & firewall Remote host appears to have direct connection to internal network

Overlay Networks

- · A network "on top of the network".
 - · E.g., initial Internet deployment
 - Internet routers connected via phone lines
 - An overlay on the phone network
 - Tunnels between nodes on a current network
- Examples:
 - The IPv6 "6bone", the multicast "Mbone" ("multicast backbone").
- But not limited to IP-layer protocols...
 - Can do some pretty cool stuff:

38

Overlay Networks 2

- Application-layer Overlays
- Application Layer multicast
 - Transmit data stream to multiple recipients
 - · Peer-to-Peer networks
 - Route queries (Gnutella search for "britney spars")
 - Route answers (Bittorrent, etc. -- project 2)
 - Anonymizing overlays
 - Route data through lots of peers to hide source
 - (google for "Tor" "anonymous")
 - Improved routing
 - Detect and route around failures faster than the underlying network does.
- Overlays provide a way to build interesting services / ideas without changing the (huge, hard to change) IP infrastructure.
- Design Q: When are overlays good?
 - Functionality between small(er) group of people w/out requiring global state/changes/etc.

Important Concepts

- · Changes to Addressing Model
 - Have moved away from "everyone knows everybody" model of original Internet
- Firewalls + NAT hide internal networks
- VPN / tunneling build private networks on top of commodity network
- IPv6
 - · Cleanup of various v4 flaws
 - · Larger addresses