Aside: Interaction with Link Layer

- How does one find the Ethernet address of a IP host?
- ARP
 - Broadcast search for IP address
 - E.g., “who-has 128.2.184.45 tell 128.2.206.138” sent to Ethernet broadcast (all FF address)
 - Destination responds (only to requester using unicast) with appropriate 48-bit Ethernet address
 - E.g, “reply 128.2.184.45 is-at 0:d0:bc:f2:18:58” sent to 0:c0:4f:d:ed:c6

Caching ARP Entries

- Efficiency Concern
 - Would be very inefficient to use ARP request/reply every time need to send IP message to machine
- Each Host Maintains Cache of ARP Entries
 - Add entry to cache whenever get ARP response
 - Set timeout of ~20 minutes

ARP Cache Example

- Show using command “arp -a”

<table>
<thead>
<tr>
<th>Interface: 128.2.222.198 on Interface 0x1000003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Address</td>
</tr>
<tr>
<td>128.2.20.218</td>
</tr>
<tr>
<td>128.2.102.129</td>
</tr>
<tr>
<td>128.2.194.66</td>
</tr>
<tr>
<td>128.2.198.34</td>
</tr>
<tr>
<td>128.2.203.3</td>
</tr>
<tr>
<td>128.2.203.61</td>
</tr>
<tr>
<td>128.2.205.192</td>
</tr>
<tr>
<td>128.2.206.125</td>
</tr>
<tr>
<td>128.2.206.139</td>
</tr>
<tr>
<td>128.2.222.180</td>
</tr>
<tr>
<td>128.2.242.182</td>
</tr>
<tr>
<td>128.2.254.36</td>
</tr>
</tbody>
</table>
ARP Cache Surprise

- How come 3 machines have the same MAC address?

<table>
<thead>
<tr>
<th>Internet Address</th>
<th>Physical Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.2.20.218</td>
<td>00-b0-8e-83-df-50</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.103.129</td>
<td>00-b0-8e-83-df-50</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.194.66</td>
<td>00-02-b3-8a-35-bf</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.188.34</td>
<td>00-06-5b-f3-5f-42</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.203.3</td>
<td>00-90-27-3c-41-11</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.203.61</td>
<td>08-00-20-a6-ba-2b</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.205.192</td>
<td>00-60-08-1e-9b-fd</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.206.125</td>
<td>00-40-b7-c5-b3-f3</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.206.139</td>
<td>00-a0-c9-98-2c-46</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.222.180</td>
<td>08-00-20-a6-be-c3</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.242.182</td>
<td>08-00-20-a7-19-73</td>
<td>dynamic</td>
</tr>
<tr>
<td>128.2.254.36</td>
<td>00-b0-8e-83-df-50</td>
<td>dynamic</td>
</tr>
</tbody>
</table>

CMU’s Internal Network Structure

- CMU Uses Routing Internally
 - Maintains forwarding tables using OSPF
 - Most CMU hosts cannot be reached at link layer

Proxy ARP

- Provides Link-Layer Connectivity Using IP Routing
 - Local router (gigrouter) sees ARP request
 - Uses IP addressing to locate host
 - Becomes "Proxy" for remote host
 - Using own MAC address
 - Requestor thinks that it is communicating directly with remote host

Things to keep in mind

- MAC ↔ IP is not 1:1
- Tradeoff
 - Security?
 - Transparent backwards compatibility
- Encapsulation
Monitoring Packet Traffic

Experiment

- Ran TCPDUMP for 15 minutes connected to CMU network
- No applications running
 - But many background processes use network
- Lots of ARP traffic (71% of total)
 - Average 37 ARP requests / second (why all from CS hosts?)
 - Only see responses from own machine (why?)

Other Traffic

- Mostly UDP
 - Encode low-level protocols such as bootp
- Nothing very exciting (why?)

Answers for UDP and ARP

- On a switched network you only see broadcast traffic or traffic sent to/from you
- TCP is never sent broadcast

Important Concepts

- Hierarchical addressing critical for scalable system
 - Don’t require everyone to know everyone else
 - Reduces number of updates when something changes
 - Interaction with routing tables

IP Address Classes (Some are Obsolete)

- Class A: 0 Network ID
- Class B: 10
- Class C: 110
- Class D: 1110 Multicast Addresses
- Class E: 1111 Reserved for experiments
IP Address Problem (1991)

- Address space depletion
 - In danger of running out of classes A and B
 - Why?
 - Class C too small for most domains
 - Very few class A – very careful about giving them out
 - Class B – greatest problem
- Class B sparsely populated
 - But people refuse to give it back
- Large forwarding tables
 - 2 Million possible class C groups

IP Address Utilization ('97)

IP Address Utilization ('06)

IP Address Utilization ('06)
Classless Inter-Domain Routing (CIDR) – RFC1338

- Allows arbitrary split between network & host part of address
 - Do not use classes to determine network ID
 - Use common part of address as network number
 - E.g., addresses 192.4.16 - 192.4.31 have the first 20 bits in common. Thus, we use these 20 bits as the network number → 192.4.16/20
- Enables more efficient usage of address space (and router tables) → How?
 - Use single entry for range in forwarding tables
 - Combined forwarding entries when possible

CIDR Example

- Network is allocated 8 class C chunks, 200.10.0.0 to 200.10.7.255
 - Allocation uses 3 bits of class C space
 - Remaining 20 bits are network number, written as 201.10.0.0/21
- Replaces 8 class C routing entries with 1 combined entry
 - Routing protocols carry prefix with destination network address
 - Longest prefix match for forwarding

IP Addresses: How to Get One?

Network (network portion):
- Get allocated portion of ISP’s address space:

<table>
<thead>
<tr>
<th>ISP’s block</th>
<th>11001000 00010111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00010111 00010000 00000000</td>
<td>200.23.16.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00010111 00010010 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00010111 00010100 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>...</td>
<td>.....</td>
<td>.....</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00010111 00011110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>

IP Addresses: How to Get One?

- How does an ISP get block of addresses?
 - From Regional Internet Registries (RIRs)
 - ARIN (North America, Southern Africa), APNIC (Asia-Pacific), RIPE (Europe, Northern Africa), LACNIC (South America)
- How about a single host?
 - Hard-coded by system admin in a file
 - Host broadcasts “DHCP discover” msg
 - DHCP server responds with “DHCP offer” msg
 - Host requests IP address: “DHCP request” msg
 - DHCP server sends address: “DHCP ack” msg
CIDR Illustration

Provider is given 201.10.0.0/21

CIDR Implications

- Longest prefix match!!

CIDR

- Supernets
 - Assign adjacent net addresses to same org
 - Classless routing (CIDR)
- How does this help routing table?
 - Combine forwarding table entries whenever all nodes with same prefix share same hop

Aggregation with CIDR

- Original Use: Aggregate Class C Addresses
- One organization assigned contiguous range of class C’s
 - e.g., Microsoft given all addresses 207.46.192.X -- 207.46.255.X
 - Specify as CIDR address 207.46.192.0/18

 Upper 18 bits frozen
 Lower 14 bits arbitrary

 - Represents $2^{18} = 64$ class C networks
 - Use single entry in routing table
 - Just as if were single network address
Size of Complete Routing Table

- Source: www.cidr-report.org
- Shows that CIDR has kept # table entries in check
 - Currently require 124,894 entries for a complete table
 - Only required by backbone routers

Outline

- CIDR IP addressing
- Forwarding examples
- IP Packet Format

Host Routing Table Example

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Genmask</th>
<th>Iface</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.2.209.100</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>eth0</td>
</tr>
<tr>
<td>128.2.0.0</td>
<td>0.0.0.0</td>
<td>255.255.0.0</td>
<td>eth0</td>
</tr>
<tr>
<td>127.0.0.0</td>
<td>0.0.0.0</td>
<td>255.0.0.0</td>
<td>lo</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>128.2.254.36</td>
<td>0.0.0.0</td>
<td>eth0</td>
</tr>
</tbody>
</table>

- From "netstat -rn"
- Host 128.2.209.100 when plugged into CS ethernet
- Dest 128.2.209.100 → routing to same machine
- Dest 128.2.0.0 → other hosts on same ethernet
- Dest 127.0.0.0 → special loopback address
- Dest 0.0.0.0 → default route to rest of Internet
 - Main CS router: gigrouter.net.cs.cmu.edu (128.2.254.36)

Routing to the Network

- Packet to 10.1.1.3 arrives
- Path is R2 – R1 – H1 – H2
Routing Within the Subnet

- Packet to 10.1.1.3
- Matches 10.1.0.0/23

Routing table at R2

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>lo0</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>provider</td>
<td>10.1.16.1</td>
</tr>
<tr>
<td>10.1.0.0/24</td>
<td>10.1.1.1</td>
<td>10.1.8.1</td>
</tr>
<tr>
<td>10.1.2.0/23</td>
<td>10.1.2.1</td>
<td>10.1.2.1</td>
</tr>
<tr>
<td>10.1.0.0/23</td>
<td>10.1.2.2</td>
<td>10.1.2.1</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>10.1.1.1</td>
<td>10.1.8.1</td>
</tr>
<tr>
<td>10.1.2.2/31</td>
<td>10.1.1.2</td>
<td>10.1.1.2</td>
</tr>
</tbody>
</table>

- Packet to 10.1.1.3
- Matches 10.1.1.1/31
- Direct route

Routing table at H1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>lo0</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.1.1</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>10.1.1.1</td>
<td>10.1.1.1</td>
</tr>
<tr>
<td>10.1.1.2/31</td>
<td>10.1.1.2</td>
<td>10.1.1.2</td>
</tr>
</tbody>
</table>

Aside: Interaction with Link Layer

- How does one find the Ethernet address of a IP host?
- ARP
 - Broadcast search for IP address
 - E.g., “who-has 128.2.184.45 tell 128.2.206.138” sent to Ethernet broadcast (all FF address)
 - Destination responds (only to requester using unicast) with appropriate 48-bit Ethernet address
 - E.g. “reply 128.2.184.45 is-at 0:d0:bc:f2:18:58” sent to 0:c0:4f:d:ed:c6
Outline

- CIDR IP addressing
- Forwarding examples
- IP Packet Format

IP Service Model

- Low-level communication model provided by Internet
- Datagram
 - Each packet self-contained
 - All information needed to get to destination
 - No advance setup or connection maintenance
 - Analogous to letter or telegram

IPv4 Header Fields

- Version: IP Version
 - 4 for IPv4
- HLen: Header Length
 - 32-bit words (typically 5)
- TOS: Type of Service
 - Priority information
- Length: Packet Length
 - Bytes (including header)
- Header format can change with versions
 - First byte identifies version
- Length field limits packets to 65,535 bytes
 - In practice, break into much smaller packets for network performance considerations
- Identifier, flags, fragment offset → used primarily for fragmentation
- Time to live
 - Must be decremented at each router
 - Packets with TTL=0 are thrown away
 - Ensure packets exit the network
- Protocol
 - Demultiplexing to higher layer protocols
 - TCP = 6, ICMP = 1, UDP = 17...
- Header checksum
 - Ensures some degree of header integrity
 - Relatively weak – 16 bit
- Options
 - E.g. Source routing, record route, etc.
 - Performance issues
 - Poorly supported
IPv4 Header Fields

- Source Address
 - 32-bit IP address of sender
- Destination Address
 - 32-bit IP address of destination

- Like the addresses on an envelope
- Globally unique identification of sender & receiver

IP Delivery Model

- **Best effort service**
 - Network will do its best to get packet to destination
- Does NOT guarantee:
 - Any maximum latency or even ultimate success
 - Sender will be informed if packet doesn’t make it
 - Packets will arrive in same order sent
 - Just one copy of packet will arrive

- Implications
 - Scales very well
 - Higher level protocols must make up for shortcomings
 - Reliably delivering ordered sequence of bytes \(\rightarrow \) TCP
 - Some services not feasible
 - Latency or bandwidth guarantees

IP Fragmentation

- Every network has own Maximum Transmission Unit (MTU)
 - Largest IP datagram it can carry within its own packet frame
 - E.g., Ethernet is 1500 bytes
 - Don’t know MTUs of all intermediate networks in advance
- IP Solution
 - When hit network with small MTU, fragment packets

Reassembly

- Where to do reassembly?
 - End nodes or at routers?
- End nodes
 - Avoids unnecessary work where large packets are fragmented multiple times
 - If any fragment missing, delete entire packet
- Dangerous to do at intermediate nodes
 - How much buffer space required at routers?
 - What if routes in network change?
 - Multiple paths through network
 - All fragments only required to go through destination
Fragmentation Related Fields

- Length
 - Length of IP fragment
- Identification
 - To match up with other fragments
- Flags
 - Don’t fragment flag
 - More fragments flag
- Fragment offset
 - Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (13 bit field)
IP Reassembly

- Fragments might arrive out-of-order
 - Don’t know how much memory required until receive final fragment
- Some fragments may be duplicated
 - Keep only one copy
- Some fragments may never arrive
 - After a while, give up entire process

Fragmentation and Reassembly Concepts

- Demonstrates many Internet concepts
- Decentralized
 - Every network can choose MTU
- Connectionless
 - Each (fragment of) packet contains full routing information
 - Fragments can proceed independently and along different routes
- Best effort
 - Fail by dropping packet
 - Destination can give up on reassembly
 - No need to signal sender that failure occurred
- Complex endpoints and simple routers
 - Reassembly at endpoints

Fragmentation is Harmful

- Uses resources poorly
 - Forwarding costs per packet
 - Best if we can send large chunks of data
 - Worst case: packet just bigger than MTU
- Poor end-to-end performance
 - Loss of a fragment
- Path MTU discovery protocol → determines minimum MTU along route
 - Uses ICMP error messages
- Common theme in system design
 - Assure correctness by implementing complete protocol
 - Optimize common cases to avoid full complexity

Internet Control Message Protocol (ICMP)

- Short messages used to send error & other control information
- Examples
 - Ping request / response
 - Can use to check whether remote host reachable
 - Destination unreachable
 - Indicates how packet got & why couldn’t go further
 - Flow control
 - Slow down packet delivery rate
 - Redirect
 - Suggest alternate routing path for future messages
 - Router solicitation / advertisement
 - Helps newly connected host discover local router
 - Timeout
 - Packet exceeded maximum hop limit
IP MTU Discovery with ICMP

- Typically send series of packets from one host to another
- Typically, all will follow same route
 - Routes remain stable for minutes at a time
 - Makes sense to determine path MTU before sending real packets
- Operation
 - Send max-sized packet with “do not fragment” flag set
 - If encounters problem, ICMP message will be returned
 - “Destination unreachable: Fragmentation needed”
 - Usually indicates MTU encountered

When successful, no reply at IP level
 - “No news is good news”
 - Higher level protocol might have some form of acknowledgement
Important Concepts

- Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - Most of the work at the endpoints
- ICMP provides low-level error reporting

- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing → hierarchical, CIDR
- IP service → best effort, simplicity of routers
- IP packets → header fields, fragmentation, ICMP

Next Lecture

- How do forwarding tables get built?
- Routing protocols
 - Distance vector routing
 - Link state routing

Some Special IP Addresses

- 127.0.0.1: local host (a.k.a. the loopback address)
- Host bits all set to 0: network address
- Host bits all set to 1: broadcast address
Finding a Local Machine

- Routing Gets Packet to Correct Local Network
 - Based on IP address
 - Router sees that destination address is of local machine
- Still Need to Get Packet to Host
 - Using link-layer protocol
 - Need to know hardware address
- Same Issue for Any Local Communication
 - Find local machine, given its IP address

Address Resolution Protocol (ARP)

- Diagrammed for Ethernet (6-byte MAC addresses)
- Low-Level Protocol
 - Operates only within local network
 - Determines mapping from IP address to hardware (MAC) address
 - Mapping determined dynamically
 - No need to statically configure tables
 - Only requirement is that each host know its own IP address

ARP Request

- Requestor
 - Fills in own IP and MAC address as "sender"
 - Why include its MAC address?
- Mapping
 - Fills desired host IP address in target IP address
- Sending
 - Send to MAC address ff:ff:ff:ff:ff:ff
 - Ethernet broadcast

ARP Reply

- Responder becomes “sender”
 - Fill in own IP and MAC address
 - Set requestor as target
 - Send to requestor’s MAC address
ARP Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Source MAC</th>
<th>Dest MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:37:53.729185</td>
<td>0:2:b3:8a:35:bf</td>
<td>ff:ff:ff:ff:ff:ff 0806 60:</td>
</tr>
<tr>
<td></td>
<td>arp who-has 128.2.222.198</td>
<td>tell 128.2.194.66</td>
</tr>
<tr>
<td>09:37:53.729202</td>
<td>0:3:47:b8:e5:f3</td>
<td>0:2:b3:8a:35:bf 0806 42:</td>
</tr>
<tr>
<td></td>
<td>arp reply 128.2.222.198</td>
<td>is-at 0:3:47:b8:e5:f3</td>
</tr>
</tbody>
</table>

• Exchange Captured with windump
 • Windows version of tcpdump
• Requestor:
 • blackhole-ad.scs.cs.cmu.edu (128.2.194.66)
 • MAC address 0:2:b3:8a:35:bf
• Desired host:
 • bryant-tp2.vlsi.cs.cmu.edu (128.2.222.198)
 • MAC address 0:3:47:b8:e5:f3