Security: Attack and Defense

Aaron Hertz
Carnegie Mellon University
15-441 Computer Networks
Spring 2003

Outline
- Breaking into hosts
- DOS Attacks
- Firewalls and other tools

Breaking Into Hosts
- Guessing Passwords
- Port scans
- Stack overflow
- TCP Hijacking

Identify Targets
- Is a host alive?
 - Use ping (ICMP ECHO request and reply)
- Is a host running, say, a telnet server?
 - Port scan (most servers listen on well-known ports)
 - TCP: try connect() on all ports (ECONNREFUSED)
 - UDP: try sendto() on all ports (ICMP_UNREACH_PORT)
 - “Stealth Scan”
 - E.g. nmap (www.insecure.org)
- What OS is a host running?
 - Different OSes react differently to special packets
Popular Port Scanners

- **NMAP** – http://www.insecure.org/nmap
 - TCP scans (full 3-way handshake on every port)
 - UDP scans
 - SYN scans using IP fragments
 - ACK and FIN scans
 - Designed to bypass firewalls and intrusion detection systems
- **QueSO** – http://www.apostols.org/projectz/queso
 - TCP scans with various combinations of TCP flags: SYN, SYN+ACK, FIN, FIN+ACK, SYN+FIN
 - Can determine remote hosts operating system, even kernel version

Gain Access

- **Direct Access**
 - Backdoor
 - Use passwords obtained from packet sniffing
 - Password guessing
 - E.g. use a dictionary attack on `/etc/passwd`
 - Bribery, blackmail, torture, etc.
- **Exploit vulnerability to gain access**
 - Protocol vulnerability
 - E.g. TCP sequence number prediction
 - Software vulnerability
 - E.g. buffer overflow, format string, etc.

Backdoors

- Secret way into the system, bypassing normal authentication
- Usually left by original programmers, though could be a result of someone compromising the code base
- Having the source doesn’t guarantee immunity
 - See “Reflections on Trusting Trust”

TCP Sequence Number Prediction

- Problem if a server uses IP/hostname based authentication
 - E.g. ".rhost" for login

```
Cracker      Server      Host A
SYN from A   SYN (x), ACK
ACK (x+1) from A
```

- Make sure the initial sequence number is “hard” to predict
Session Hijacking

- Allows an attacker to steal, share, terminate, monitor and log any terminal session that is in progress
- Session stolen across the network
- What can be hijacked:
 - telnet, rlogin, rsh, ftp
 - Simple session hijacking scenario:
 - A telnets to B to get some work done
 - Attacker resets connection to A
 - Attacker kicks off A and takes over the session to B

Buffer Overflows

- One of the most used “hacking” techniques
- Advantages
 - Very effective
 - Attack code runs with privileges of exploited process
 - Can be exploited locally and remotely
 - Interesting for network services
- Disadvantages
 - Architecture/OS version dependent
 - Directly inject assembler code / call system functions
 - Some guess work involved (correct addresses)

Stack Overflow Attack

- Data is copied into local variables without proper bound checking
 - Vulnerable functions: strcpy, strcat, gets, fgets, sprintf…
- Data “overflows” allocated buffer and overwrites stack data (especially return address)
 - If done with random data, usually causes a segmentation fault
- Carefully overwrite content and set return value to user-defined value
 - Causes a jump to user-defined code – modified execution flow
 - This code is executed with privileges of running process

Stack Overflow: Code

- What code should be placed in the buffer?
 - Assembly instructions, system calls, alignment
 - Different variations for different platforms
 - Do not know addresses
- Usually, a shell in started
 - Use system call (execve) to spawn shell
 - Runs with same privileges as exploited application
Social Engineering

- An attempt by a hacker to persuade a legitimate system user to reveal information
- Most common way hackers break into systems
- "If you give me your logon ID and password, I can fix it in a few minutes, you can change your password when I am done"….
 - A real help desk employee will never ask for this!
- Hacker takes advantage of the organization size – people do not know each other
- Ignorance is a big help to the attacker

After Gaining Access

- Obtain confidential information
 - E.g. emails, credit card numbers, et.
- Destroy files, prevent login, …
- Use the host as a base for future attacks
 - Use it for a DDoS attack
 - Use it to gain access to other machines in a corporate network
- Install "rootkit": modified system tools, for example:
 - ps: won’t display certain processes
 - ls: won’t display certain files
 - netstat: won’t display certain network connections
- Run packet sniffer to obtain more information (e.g. passwords)
- …

Detecting Attacks: Intrusion Detection

- What to detect?
 - Intrusion attempts
 - Successful intrusions – compromised hosts
- Detecting intrusion attempts
 - Filter and log certain packets
 - Analyze the logs
 - Example: snort
 - http://www.snort.org

Bypassing Intrusion Detection Systems

- Sneak attacks past an IDS
 - Fragmentation
 - HTTP non-standard URL encodings
 - ‘/’ padding: /cgi-bin///phf
 - Self-referencing directories: /cgi-bin/./phf
 - URL encoding: %2fcgi-bin/phf
 - Reverse directory traversal: /cgi-bin/here/./phf
- False alarms
 - Fill security logs with many false attacks, so real attacks go un-noticed
Honeypots

- Fake machine designed to appear interesting to hackers
 - Emulated services that appear vulnerable
 - May contain fake confidential data
- Any interaction with the honeypot is unauthorized
- Uses
 - Track hackers
 - Research new attack methods

Network Telescopes

- Chunk of globally-routable IP addresses with little or no legitimate traffic
- Used to “see” remote security events
 - Attacks directed at random target addresses
 - Especially worms, e.g. Code Red
 - Backscatter from DoS attacks
 - Attacker must randomly spoof source address
 - True of most major attack tools
 - Not SMURF or other reflector attacks
 - Received backscatter is evidence of an attack elsewhere

Detecting Compromised Hosts

- Check for the presence of a “rootkit”
- “Integrity check”
 - Construct a database that stores a signed hash of each important file
 - Check all files periodically (e.g. every day)
- Example: tripwire
 - http://www.tripwire.org

Denial of Service Attacks

- Make services unavailable
- Typically achieved by wasting resources associated with the service
 - Network bandwidth, memory, CPU cycles
 - Challenge: make the defense cheap
- Common attacks:
 - SYN attack, SMURF, DDoS
- IP traceback
Examples of DoS Attacks

- There are countless DoS attacks out there today
- Various forms:
 - SYN Flooding
 - Land (and similar)
 - Teardrop (and similar)
 - Smurf, Papasmurf
 - Ping of Death

DoS: TCP SYN Flooding

- TCP is subject to SYN Flooding
- TCP based on 3-way handshake (ISN – initial sequence number)
 - A ——SYN(A, ISN_A)----------------------> B
 - A <---ACK(A, ISN_A), SYN(B, ISN_B)----- B
 - A ——ACK(B, ISN_B)-----------------------> B
- System must allocate resources for each SYN which arrives
- SYN attack scenario
 - Attacker sends several SYN packets to a victim from a spoofed (fake) machine SYN(X, ISN_X)
 - Connection is never ACK’d, and waits for timeout
 - Victim’s queue fills up, either crashes or cannot serve more requests

Defense against SYN Flooding

- SYN Cookies: Clever way to accept new connections when SYN queue is full
- Built into Linux and FreeBSD
- ISN is a function of several variables:
 - Top 5 bits: time stamp
 - Next 3 bits: encoding of MSS based on client’s MSS
 - Bottom 24 bits: cryptographically secure function of client and server addresses and port numbers and timestamp
- Can rebuild a dropped SYN from information encoded in ACKed sequence number
- But, cryptography means connections cannot be forged

SMURF

- ICMP echo (spoofed source address of victim)
- Sent to IP broadcast address
- ICMP echo reply
SMURF Defense

- Not much, at target
 - Even if you block the packets, upstream bandwidth still clogged
- To prevent a SMURF from originating from a network:
 - Exit filtering for spoofed packets
 - Disallow incoming ICMP packets to broadcast addresses

Firewalls

- The goal of the firewall is to control what traffic enters and leaves a network
 - Creates a trust boundary: people outside of the firewall are trusted less than people inside the firewall
 - Similar to putting a guard at the door checking IDs
- Firewalls alone do not offer sufficient security
 - Still have to be concerned about security breaches within the organization
 - Every organization has materials that require different levels of secrecy
 - But, firewalls limit how much traffic has to be monitored
 - Can also help with DoS attacks

Filter-based Gateways

- A filter classifies packets based on the header
 - IP addresses
 - Port numbers
 - Protocol and message types
 - Connection information
- Filter decides which packets go through and which packets are dropped.
 - No telnet, only outgoing web connections, ...

Application Gateways

- The application-level connection is terminated at the gateway and a separate connection is established over the external network
- The gateway can monitor contents of messages since it “understands” the application
 - Application header versus data
- Can be combined with the use of filters
 - E.g. the filter only forwards connections from an application gateway
AAA

- Authentication, Authorization, Accounting
 - Process used whenever users access a commercial ISP
 - ISP wants to know who you are
 - ISP will verify that you are allowed to get service
 - ISP will want to keep track of your use of the network for charging and auditing purposes
- Example protocol is RADIUS
 - Example uses: dialup access to large access providers
 - IETF standard