
15-441: Computer Networks

Project 2: Distributed HTTP

TAs: Athula Balachandran <abalacha@cs.cmu.edu>
Wolfgang Richter <wolf@cs.cmu.edu>
Charles Guo <rang@andrew.cmu.edu>

Assigned: October 22, 2011

Checkpoint 1 due: October 30, 2011

Final version due: November 13, 2011

1 Introduction

In this project you will be implementing a Distributed HTTP service on top of the Liso
webserver that you built in Project 1. This project has inspirations from Content Centric
Networking where as a client you are interested in fetching a particular object (say midterm-
soln.pdf). This object may be hosted in multiple servers and the client does not care from
which machine the data is served. For the sake of simplicity, throughout this project, we
assume that there is some out of the band scheme (which we are not worried about) to
specify globally unique names for objects and if two different hosts have objects with the
same name, they both contain the same content (eg. if 172.168.1.2:8080, 172.163.1.2:8080
and 172.168.1.4:8080 are serving midterm-soln.pdf, fetching it from any of them would result
in downloading the same file). You may infact want to get it served from the nearest server.
In order to perform resource discovery (i.e. which all servers have midterm-soln.pdf), choose
the nearest server amongst them and find the next hop to get to it, you will be using a
modified version of OSPF to do reliable flooding.

For completing this project, you will need to build a Routing Daemon written in C
which will be coupled to the Liso Webserver. You will also be implementing a simple Flask
Application to run on top of your Liso Server. You will not be required to make any major
modifications to the Liso server for this project. But we assume that your Liso Server is
feature complete (i.e. with CGI functionality working to run the Flask application). If you
are not comfortable with using your implementation of Liso, you may use a replacement web
server of your choice (Apache, default web server that comes with Flask etc).

1

mailto:abalacha@cs.cmu.edu
mailto:wolf@cs.cmu.edu
mailto:rang@andrew.cmu.edu


2 Logistics

• This is a living document—meaning we are evolving the project and this document as
time goes on. This is again a new project for 15-441, so things will change as we go and
learn.

• This is a group project. You must find exactly one partner for this assignment. Bboard
is an excellent channel for looking for partners. In case there are an odd number of
people in the class and you are left out, please contact Athula (abalacha@cs.cmu.edu).

• As before, all of your project files and submissions must be stored in an Indefero git-
backed repository: http://sourcery.cmcl.cs.cmu.edu/indefero

• Checkpoint 1: 1) create a private project named <andrewid1>-<andrewid2>-15-441-
project-2 for your project 2, 2) implement the flask web application and the router
daemon’s interface to the flask application 3) tag your submission by the deadline and
include all needed tag files as outlined in Section 10.

• Checkpoint 2/Final Submission: 1) implement the OSPF routing algorithm and object
name based nearest server lookup on the routing daemon 2) tag your submission by the
deadline

3 General Overview

There are three different components that together form a single node for this project: Liso
server, a flask application running over CGI on the Liso Server and a Routing Daemon. There
will be multiple such nodes connected by some topology. Each of these nodes host certain
objects and if any of these nodes is contacted (via the flask application) for an object, the
node should be able to serve the object if available locally or route it to the nearest available
node that has the object.

The routing daemon will be a separate program from your Liso server. Its purpose is
to maintain the routing state of the network (e.g., build the routing tables or discover the
routes to destinations). It also enables resource lookup (i.e., given an object name, it should
be able to find the nodes that have the particular object). It should be able to find out the
nearest node that has the object. If the object is available on this particular node itself, then
it returns the URI to the content, if not it needs to return information regarding the next
hop to the closest node hosting the particular object.

The flask application acts as an interface between the client (web browser) and the routing
daemon. It queries the routing daemon to find out the next hop information to fetch the
object requested by the client. Note that the routing daemon only provides the routing
information, the flask application does the forwarding based on the next hop information
provided by the routing daemon.

2

http://sourcery.cmcl.cs.cmu.edu/indefero


The Liso server is required to host the flask application, but there is no explicit changes
required to be made to your server. A node hence will have a liso daemon and a routing
daemon running and the flask application will be executed whenever a client wants to do a
lookup for an object using the distributed http service.

In your implementation, the routing daemon will communicate with other routing dae-
mons (on other nodes) over a UDP socket to exchange routing state. It will talk to the flask
application running on the Liso server that is on the same node as it via a TCP socket.
In order to find out about the network topology, each routing daemon will receive a list of
neighboring nodes when it starts. In this project, you can assume that no new nodes or links
will ever be added to the topology after starting, but nodes and links can fail (i.e., crash or
go down) during operation (and may recover after failing).

What is a practical usage sceanrio for this? Anyone running large distributed web appli-
cations would require accessing objects remotely. They often have to pull in objects from lots
of servers at once, as quickly as possible, in serving a single page—for example, Facebook,
Google, etc. The point-to-point routing that we use in this project could be optimized out
as described, but we are keeping it for now to demonstrate routing.

4 Definitions

• Node: The routing daemon and the Liso server with the flask application pair running
together that is part of the larger network. In the real world, a node would refer to
a single computer, but we can run multiple virtual nodes on the same computer since
they can each run on different ports. Each node is identified by its nodeID.

• NodeID: A unique identifier that identifies a node. This is an unsigned 32-bit integer
that is assigned to each node when its Liso server and routing daemon start up.

• Neighbor: Node 1 is a neighbor of node 2 if there is a virtual link between 1 and 2.
Each node obtains a list of its neighbors nodeIDs and their routing, local and liso ports
at startup.

• Object: A file as a null terminated character string. To simplify the project, we assume
that the object will be at most 9 characters long and may not contain spaces or special
characters.

• Nexthop-URI: The routing information returned by the routing daemon to the flask
application will be in the form of a URI which we call Nexthop-URI. In case the object
is available locally on the node, doing a GET on the Nexthop-URI will retrieve the
content. If not, doing GET on the URI will invoke the flask application running on the
next hop neighbor on the shortest path to the object. Note that to the flask application
this does not make a difference, the routing daemon has to handle the case of checking
whether the object is available locally or not.

3



• Liso port: The TCP port on the Liso server that talks to clients.

• Routing port: The UDP port on the routing daemon used to exchange routing infor-
mation with other routing daemons.

• Local port: The TCP port on the routing daemon that is used to exchange information
between it and the flask application. For example, when the flask application wants to
find out the route to remote user, it queries the routing daemon on this port. The socket
open for listening will be on the routing daemon. The flask application will connect to
it.

• OSPF: The shortest path link state algorithm that inspires the (much simpler) algorithm
you will implement

• Routing table: The data structure used to store the next hops that packet should take
used in OSPF.

5 Flask Application

Here is the workflow for the flask application.
1) The server is supposed to handle CGI requests at /rd/* and they should be redirected

to the flask web application that you have written. Typically the distributed http service
lookup request will be a GET request at /rd/<port>/o1.html (eg., /rd/7689/o1.html). Here
the rd stands for routing daemon and indicates that we want to use the distributed http to
retrieve the object (here o1.html). The <port> here stands for the local port (for communi-
cation between the flask application and the routing daemon). The request at the front end
node is generated by a webform where the user can enter the object that it needs to retrieve
using the distributed http service and the front end node receives the request.

2) The flask application receives the object name from the HTTP GET request and now
needs to connect to the routing daemon using the local port (specified in the URL). It then
needs to send the following a RDGET request which is described as follows:
Request: GETRD <object>
Response: OK <Nexthop-URI>
Examples:
Request: GETRD o1.html
Response: OK http://176.8.34.1:8000/rd/6789/o1.html
Here the node with ip:port 176.8.34.1:8000 is on the next hop to the nearest server that has
the object o1.html and hence the request is redirected to the routing framework on that node
(because the link has /rd/*
Request: GETRD o1.html
Response: OK http://localhost:8080/static/o1.html
Here the node has the o1.html locally and hence gives the URI corresponding to it.

4



Note here that this logic is completely done by the routing dameon and the flask application
just has to get the URI and does not have to care whether it is calling another routing lookup
or whether the file is available locally.

3) The Python app should do a urllib.urlopen() on the returned <Nexthop-URI>.

4) Similarly the web app should also handle adding new files using POST operation using
an addfile operation. Addfile works similarly, except it is a POST operation, not a GET and
the POST URL will be of the form: /rd/addfile/<port>/<object> When POSTing your
web app should save the object into the ’static’ folder with the name being the sha256sum
(see Python hashlib) of the file contents and once the file is saved to disk, contact the local
Routing Daemon at the port specified by the URL using TCP connection and do the follow-
ing:
Request: ADDFILE <object> <local relative path>
Response: OK

Examples:
Request: ADDFILE o1.html /static/8fb7c
Response: OK

Here the o1.txt is the identifier of the object and the actual file is placed at relative path
location /static/8fb7c With this information, the routing dameon should later be able to
reconstruct the URL to get this by doing http://localhost:8080/static/8fb7c

You can find a detailed description of this protocol at http://www.cs.cmu.edu/~srini/
15-441/F11/pj2_protocol

6 Routing Daemon

The routing dameon on start up reads two files— configuration file and file list file.
The configuration file describes the neighborhood of a node. The neighborhood of a node

1 is composed by node 1 itself and all the nodes n that are directly connected to 1. For
example, in Figure 4, the neighborhood of node 1 is 1, 2, 3. The file contains a series of
entries, one entry per line. Each line has the following format:

nodeID hostname routing-port local-port server-port
where nodeID assigns an identifier to each node, hostname gives the name or IP address

of the machine where the neighbor node is running, local-port gives th TCP port on which
the routing daemon should listen for the python flask application, routing-port refers to the
port where the neighbor node listens for routing messages and server-port refers to the TCP
port on which the Liso server at that node listens for clients.

Similarly the file list file contains the list of objects and their corresponding relative file
path, that are being served by this particular server on startup. Each line of the file is of
the format object relative-file-path.

5

http://www.cs.cmu.edu/~srini/15-441/F11/pj2_protocol
http://www.cs.cmu.edu/~srini/15-441/F11/pj2_protocol


The routing dameon has to maintain the following information:

• Routing table containing node id and the next hop path. This is constructed from the
Link State Announcements using OSPF algorithm (see next section for details). Each
node should also know the cost to each of the other nodes in order to find the nearest
node that has a particular object.

• Maintain a mapping from the local objects and their relative path on the server. This
can be populated by reading the file list file on bootup. Also when the flask application
does ADDFILE call, it should make an additional entry for the new object, relative file
path mapping.

• Should be able to find the nearest node that hosts a particular object. The list of nodes
that host a particular object can be obtained by parsing the file list to identify the
local files as well as by parsing the link state announcements that contain the list of
files hosted on remote nodes. The nearest node amongst these must be chosen. In case
there is a tie, the node with numerically lower nodeID must be chosen.

When the flask application does a GETRD request with an object name, the routing
daemon has to to check if the object is local. If it is local then send the URI built from the
relative file path, peername of the server and the Liso server port number. If the object is
not available locally but available on a remote node then it needs to find the closest remote
node on which the file is available using the routing table and then find the next hop to get
to the node and redirect to the flask application running on that node. It then needs to
construct the URI based on the peername of the next hop neighbor, its Liso server port, its
localport and the object name.

7 Link State Routing Protocol

7.1 Basic Operation

You will implement a link-state routing protocol similar to OSPF, which is described in
the textbook in chapter 4, and in more detail in the OSPF RFC1. Note, however, that
your protocol is greatly simplified compared to the actual OSPF spec. As described in the
references, OSPF works by having each router maintain an identical database describing
the networks topology. From this database, a routing table is calculated by constructing
a shortest-path tree. Each routing update contains the nodes list of neighbors and list of
objects available locally. Upon receiving a routing update, a node updates its routing table
with the best routes to each destination. In addition, each routing daemon must remove
entries from its routing table when they have not been updated for a long time. The routing
daemon will have a loop that looks similar the following:

while (1)

6



{

/* each iteration of this loop is "cycle" */

wait_for_event(event);

if (event == INCOMING_ADVERTISEMENT)

{

process_incoming_advertisements_from_neighbor();

}

else if (event == IT_IS_TIME_TO_ADVERTISE_ROUTES)

{

advertise_all_routes_to_all_neighbors();

check_for_down_neighbors();

expire_old_routes();

delete_very_old_routes();

}

}

Lets walk through each step. First, our routing daemon A waits for an event. If the event
is an incoming link-state advertisement (LSA), it receives the advertisement and updates
its routing table if the LSA is new or has a higher sequence number than the previous
entries. If the routing advertisement is from a new router B or has a higher sequence
number than the previously observed advertisement from router B, our router A will flood
the new announcement to all of its neighbors except the one from which the announcement
was received, and will then update its own routing tables.

If the event indicates a predefined period of time has elapsed and it is time to advertise
the routes, then the router advertises all of its objects, and links to its direct neighbors. If
the routing daemon has not received any such advertisements from a particular neighbor
for a number of advertisements, the routing daemon should consider that neighbor down.
The daemon should mark the neighbor down and re-flood LSA announcements from that
neighbor with a TTL of zero When your router receives an announcement with a TTL of
zero, it should delete the corresponding LSAs from its table.

If the event indicates that a new object was added using ADDFILE, the router should
send a triggered update to its neighbors. This is simply a new link state advertisement with
a higher sequence number that announces the routers new state. If a node has not sent any
announcements for a very long time, we expire it by removing it from our table.

If B receives an LSA announcement from A with a lower sequence number than it has
previously seen (which can happen, for example, if A reboots), B should echo the prior LSA
back to A. When A receives its own announcement back with a higher sequence number, it
will increment its transmitted serial number to exceed that of the older LSAs.

Each routing announcement should contain a full state announcement from the router all
of its neighbors and all of its objects. This is an inefficient way to manage the announcements,
but it greatly simplifies the design and implementation of the routing protocol to make it

7



more tractable for a 3 week assignment. Each time your router originates a new LSA, it
should increment the serial number it uses. When a router receives an updated LSA, it
recomputes its local routing table. The LSAs received from each of the peer nodes tell the
router a link in the complete router graph. When a router has received all of the LSAs for
the network, it knows the complete graph. Generating the object routing table is simply a
matter of running a shortest-paths algorithm over this graph.

7.2 Reliable Flooding

OSPF is based upon reliable flooding of link-state advertisements to ensure that every node
has an identical copy of the routing state database. After the flooding process, every node
should know the exact network topology. When a new LSA arrives at a router, it checks to
see if the sequence number on the LSA is higher than it has seen before. If so, the router
reliably transmits the message to each of its peers except the one from which the message
arrived. The flooding is made reliable by the use of acknowledgement packets from the
neighbors. When router A floods an LSA to router B, router B responds with an LSA Ack.
If router A does not receive such an ack from its neighbor within a certain amount of time,
router A will retransmit the LSA to B. Using the LSA, each node should also be able to find
the nodes on which a particular object is available. Once it knows the nodes, it can find the
closest node (which could even be itself).

7.3 Protocol Specification

Figure 1: OSPF Packet Format - Figure shows the routing message format, with the size of each field in

bytes in parenthesis

8



• Version : the protocol version, always set to 1

• TTL : the time to live of the LSA. It is decremented each hop during flooding, and is
initially set to 32.

• Type: Advertisement packets should be of type 0 and Acknowledgement packets should
be of type 1

• Sender nodeID : The nodeID of the sender of the message, NOT the immediate sender.

• Sequence Number : The sequence number given to each message.

• Num link entries : The number of link table entries in this message.

• Num object entries : The number of objects announced in this message.

• Link entries: Each link entry contains the nodeID of a node that is directly connected
to the sender. This field is 4 bytes.

• Object entries : Each object entry contains the name of the object that is hosted at the
sender. These should be null-terminated strings.

All multi-byte integer fields should be in network byte order. An acknowledgement packet
looks similar to an announcement packet, but it does not contain any entries. It contains the
sender nodeID and sequence number of the original announcement, so that the peer knows
the LSA has been reliably received.

7.4 Requirements

Your OSPF implementation should have the following features:

• Given a particular network configuration, the routing tables at all nodes should converge
so that the forwarding will take place on the path with the shortest length.

• In the event of a tie for shortest path, the next hop in the routing table should always
point to the nodeID with the lowest numerical value. Note that this implies there should
be a unique solution to the routing tables in any given network.

• Remove the LSAs for a neighbor if it hasnt given any updates for some period of time.

• You should implement Triggered Updates (when a link goes down or when a new object
is added at a node).

• If a node or link goes down (e.g., routing daemon crashes, or link between them no
longer works and drops all messages), your routing tables in the network should re-
converge to reflect the new network graph. You shouldnt have to do anything more to
make sure this happens, as the above protocol already ensures it.

9



You don’t have to implement the following:

• You do not have to provide authentication or security for your routing protocol mes-
sages.

• You do not have to jitter your timer with randomized times.

8 Implementation Details

Your routing daemon must be written in the C programming language. You are not allowed
to use any custom socket classes or libraries, only the standard socket library and the provided
library functions. You may not use the csapp wrapper library from 15-213, or libpthread
for threading. We disallow csapp.c for two reasons: first, to ensure that you understand
the raw standard BSD sockets API, and second, because csapp.c’s wrapper functions are
not suitable for robust servers. Temporary system call failures (e.g., EINTR) in functions
such as select could cause the server to abort, and utility functions like rio readlineb are not
designed for nonblocking code.

For implementing the flask web application, you will have to use python. If need be, you
can write a C based web application but it might be more complex. You can take a look
at the Python tutorial and the Flask tutorial online to create the simple webapp needed for
this project.

We encourage the use of anything for testing. Use Wireshark, use web browsers, use
Python to script tests—for testing, the sky is the limit.

8.1 Compiling

You are responsible for making sure your code compiles and runs correctly on the Andrew
x86 machines running Linux (i.e., linux.andrew.cmu.edu / unix.andrew.cmu.edu). We rec-
ommend using gcc to compile your program and gdb to debug it. You should use the -Wall
and -Werror flags when compiling to generate full warnings and to help debug. Other tools
available on the Andrew unix machines that are suggested are ElectricFence (link with -
lefence) and Valgrind—use this with full leak checking to ensure you have no memory leaks.
For this project, you will also be responsible for turning in a GNU Make compat-

ible Makefile. See the GNU make manual for details. When we run make we should end
up with the Liso web server compiled lisod and the router daemon compiled routed .

8.2 Command Line Arguments

The routing daemon will always have arguments—functional or not:

The Router Daemon needs to be run as follows: usage: ./routed <nodeid> <config file>
<file list> <adv cycle time> <neighbor timeout> <retran timeout> <LSA timeout>

10



node id – a unique identifier for a node (32 bit integer)
config file – name of the configuration file that contains information about neighboring

nodes (including itself)
file list – a file containing the object to relative path mapping of the file on the local

webserver.
adv cycle time – In seconds, it determines the amount of time between each advertise-

ment cycle. You may set it to 30.
neighbor timeout – The elapsed time, in seconds, after which we declare a neighbor to

be down if we have not received any updates from it. You may assume that this is a multiple
of adv cycle time. You may set it to 120.

retran timeout – The elapsed time, in seconds, after which a peer will attempt to
retransmit an LSA to a neighbor if it has not yet received an LSA acknowledgement from
it. You may set it to 3 seconds.

LSA timeout – The elapsed time, in seconds, after which we expire an LSA if we have
not received any updates for it. You may again assume this to be a multiple of adv cycle
time. You may set it to 120.

The Liso server will be run as before (See Project 1 documentation).

9 Testing

Code quality is of particular importance for server robustness in the presence of client errors
and malicious attacks. Thus, a large part of this assignment (and programming in general)
is knowing how to test and debug your work. There are many ways to do this; be creative.
We would like to know how you tested your code and how you convinced yourself it actually
works. To this end, you should submit your test code along with brief documentation
describing what you did to test that your server works. The test cases should include both
generic ones that check the server functionality and those that test particular corner cases.
If your server fails on some tests and you do not have time to fix it, this should also be
documented (we would rather appreciate that you know and acknowledge the pitfalls of your
server, than miss them). Several paragraphs (or even a bulleted list of things done and why)
should suffice for the test case documentation.

10 Handin

Handing in code for checkpoints and the final submission deadline will be done through your
project repositories. You are supposed to create a login and repository on http://sourcery.

cmcl.cs.cmu.edu/indefero as part of Checkpoint 1. Every checkpoint and handin will be
a git tag after this.

The grader will check tags in your repository for grading, which can be created with a
“git tag checkpoint-* xxXXxxXXxx” with appropriate values filled in:

11

http://sourcery.cmcl.cs.cmu.edu/indefero
http://sourcery.cmcl.cs.cmu.edu/indefero


• Checkpoint1 – tagged as checkpoint-1 via git tag creation

• Final Handin – tagged as checkpoint-2 via git tag creation

Your repository should contain the minimum following files (with each tag!):

• Makefile – Make sure all the variables and paths are set correctly such that your
program compiles in the handin directory—not just a local machine or account. The
Makefile should, by default, always build an executable named lisod.

• All of your source code – (files ending with .c, .h, etc. only, no .o files and no
executables)

• readme.txt – File containing a brief description of your design of your current version
of lisod.

• tests.txt – File containing documentation of your test cases and any known issues you
have.

• vulnerabilities.txt – File containing documentation of at least one vulnerability you
identify at each stage.

Late submissions will be handled according to the policy given in the course syllabus.

11 Grading

This grade allocation might change slightly, this is just a rough estimate of the grades

• Flask Web Application: 20 points

The grade in this section is intended to reflect your ability to write a simple flask web
application.

• Routing Daemon and Flask Interface: 20 points

The grade in this section is intended to test the miniature protocol between the routing
daemon and the flask web application and how well it does lookups.

• OSPF Implementation: 40 Points

• Robustness: 10 points

– Server robustness: 5 points

– Test cases: 5 points

Since code quality is of a high priority in server programming, we will test your pro-
gram in a variety of ways using a series of test cases. We will also look at your own
documented test cases to evaluate how well you tested your work.

12



• Style: 5 points

Poor design, documentation, or code structure will probably reduce your grade by mak-
ing it hard for you to produce a working program and hard for the grader to understand
it; egregious failures in these areas will cause your grade to be lowered even if your im-
plementation performs adequately.

Document code using Doxygen-style comments.

In some of our structured code examples, we showcase an underlying logging facility
that logs to a configured file. Use something similar to this to keep traces of your server
and debug.

• Checkpoints and Final: 5 points each

Late policy DOES apply to the checkpoints. However, considering the fact that you
only have 2 late days for the entire semester, we strongly encourage you to plan ahead
and not to use late days for checkpoints.

12 Extra Credits

You can gain extra credits for this project. You can choose maximum two out of the

three options below and gain extra credits. Notice that all options do not have the same
points.

• Caching : 5 points

Extend your implementation of the flask application to also perform caching of the ob-
jects that it fetches from remote nodes (because it is not available locally). The node
should store the object to a file in the static folder under the name of the sha256sum
of the contents of the object and then do an ADDFILE request to the routing daemon
with the object name and the relative path. You also have to do triggered LSA update
with the latest object entry announcement.

• Longest Prefix Match : 10 points

Now assume that the object names have a directory structure. eg /cmu/csd/athula,
/cmu/csd/srini. Nodes can advertise that it contains all objects under a particular
object directory. i.e. If a node advertises that it contatins /cmu/ or /cmu/csd/, it
implies that it contains all directories and file objects in that directory path, i.e. it is
hosting both the above file objects. So now the object announcements may contain both

13



directory path announcements as well as more specific individual object announcements.
You need to extend your current implementation to do longest prefix match. i.e. If node
1 announces that it is hosting /cmu/, node 2 announces that it is hosting /cmu/csd/
and node 3 announces that it is hosting /cmu/csd/srini, lookup for /cmu/csd/srini
should now select node 3 irrespective of whether node 1 or 2 is closer than node 3. The
lookup workflow should be modified to the following:
1) Check if the object is available locally and serve it if so.
2) If not, do longest prefix match and among the nodes that have the longest match
route to the closest node.
3) If there are any more ties, route to the node with numerically lower nodeID.

• Persistent Connections and Pipelined Requests : 10 points

Extend the flask application to maintain a maximum of 10 worker threads to handle
10 persistent TCP connections with the routing daemon. These connections may be
formed as and when requests come into the system. Perform pipelined GETRD and
ADDFILE requests on each of these connections.

14


	Introduction
	Logistics
	General Overview
	Definitions
	Flask Application
	Routing Daemon
	Link State Routing Protocol
	Basic Operation
	Reliable Flooding
	Protocol Specification
	Requirements

	Implementation Details
	Compiling
	Command Line Arguments

	Testing
	Handin
	Grading
	Extra Credits

