

You Aren't a One Man Army:
Introducing 0MQ

Wolf Richter

Don't waste time in
the future reinventing
the wheel.

This is an
engineering snafu.

If ZeroMQ didn't exist, it would be
necessary to invent it. ZeroMQ simply
seems to me a "bare necessity"
nowadays.

Gonzalo Diethlem

The more time I spend with ZeroMQ, the
less I can think of a reason I'd ever
have to open up a raw TCP or UDP
socket.

Andrew Cholakian

ZeroMQ: Panacea?

● 30+ Languages: C, C++, Python, Java...
● Transport: inproc, IPC, TCP, multicast
● Patterns: req-rep, pub-sub, push-pull, ...
● Async by design: separate IO thread
● Built for speed: originally for stock trading
● OS-agnosticism: Linux, Windows, OS X
● Vibrant community, active development
● Linux Kernel someday soon?

ZeroMQ, Zero Setup

● Versus: Qpid, OpenAMQ, RabbitMQ, *MQ
● No middleware
● No messaging broker (lose persistance)
● Embedded, linked library
● Messaging fabric becomes part of app

Which brings us back to the science of
programming. To fix the world, we
needed to do two things.

One, to solve the general problem
of "how to connect any code to
any code, anywhere".

Two, to wrap that up in the
simplest possible building blocks
that people could understand and
use easily.

Usage: zguide mostly in C

http://zguide.zeromq.org/

Use ZeroMQ 2.1 Stable

http://zguide.zeromq.org/

ZeroMQ is a new way of thinking about
concurrency, multicore systems, distributed
systems, and network programming.

It changes your world view.

Not many libraries can do that...

Request-reply

Publish-Subscribe

Pipeline or Push-Pull

Multicore, Multithreading?

ZeroMQ

we don't need mutexes, locks, or any other
form of inter-thread communication except
messages sent across ØMQ sockets

Network Programming?

ZeroMQ

It gives you sockets that carry whole
messages across various transports like in-
process, inter-process, TCP, and multicast.

You can connect sockets N-to-N with
patterns like fanout, pub-sub, task
distribution, and request-reply.

Use all cores and machines?

ZeroMQ

It presents a familiar BSD socket API but
that hides a bunch of message-processing
machines that will slowly fix your world-
view about how to design and write
distributed software.

ZeroMQ Keeps on Giving

● Great open source community example
● Excellent documentation
● Superbly engineered C++ core
● Very active mailing list

Publisher in C (1)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "zmq.h"

int main (void)
{
 void *context = zmq_init(1);
 void *publisher = zmq_socket(context, ZMQ_PUB);
 zmq_bind(publisher, "tcp://*:5556");

 srand((unsigned) time(NULL));
 while(1) {

 int zipcode, temperature, relhumidity;
 zipcode = rand() % 100000;
 temperature = (rand() % 215) - 80;
 relhumidity = (rand() % 50) + 10;

 char update[20];

Publisher in C (2)

 sprintf(update, "%05d %d %d", zipcode, temperature, relhumidity);
 zmq_msg_t message;
 zmq_msg_init_size(&message, strlen(update));

 memcpy(zmq_msg_data(&message), update, strlen(update));

 zmq_send(publisher, &message, 0);
 zmq_msg_close(&message);
 }

 zmq_close(publisher);
 zmq_term(context);
 return 0;
}

Subscriber in Python (1)

#!/usr/bin/env python
import sys
import zmq

context = zmq.Context()
socket = context.socket(zmq.SUB)

socket.connect("tcp://localhost:5556")

filter = "10001"
socket.setsockopt(zmq.SUBSCRIBE, filter)

Subscriber in Python (2)

total_temp = 0
for update_nbr in range(5):
 string = socket.recv()
 print string

 zipcode, temperature, relhumidity =\
 string.split()
 total_temp += int(temperature)

print "Average temperature was %dF" % (
 total_temp / update_nbr)

PJ3 Extra Credit [10 Points]

● Create a ZeroMQ bridge w/ your protocol

● Email Wolf telling you did this...
● Use the reliable data transport protocol

● ZMQ message size cap at 256MB
● Produce a 'zmq_bridge' executable on 'make ec'

● Take two parameters:
● 'zmq_bridge <port1> <port2>'

● port1 – SUB socket

● port2 – PUB socket

PJ3 EC Picture

zmq_bridgeport1 port2

PUB reverse connect
'Earth'

Deep Space Relay

SUB connect
'Mars'

“secret sauce here”

Don't waste time in
the future reinventing
the wheel.

This is an
engineering snafu.

GitHub:

Git it, got it, good.

git clone git://github.com/theonewolf/15-441-Recitation-Sessions.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	page42

