

There is no Such Thing as TCP:
TCP Congestion Control

Wolf Richter

Background

● RFC 793 – Original TCP RFC
● RFC 2001 – Close language to class
● RFC 5681 – More up-to-date RFC 2001
● Vint Cerf is here Friday
● http://dl.acm.org/citation.cfm?id=52356 –

Van Jacobson, Congestion Avoidance and Control

● Linux: man tcp

http://dl.acm.org/citation.cfm?id=52356

The Learning TCP Problem

● Slide's versions
● Book's version
● RFC versions
● Research paper versions
● Version in your head
● Then, there's the multiple real-world

implementations

Learn Exact Versions of TCP

● Tahoe
● Reno
● New Reno
● Vegas
● That's the goal here unfortunately

As always, experimenting on
your own with a real
implementation is the only
way you will learn anything
valuable.

So, we're making
you implement your own.

Problem: Avoid congestion
with no central coordination,
no knowledge from peers, and
no direct network feedback.

All you see are, essentially,
ACKs.

New Connection: Slow Start [Tahoe]

● Intuition: Don't flood, but quickly optimize
● Start really small: 1 SMSS
● Grow really fast: exponentially
● Occurs: beginning of TCP, after timeout

ssthresh

● cwnd – congestion window
● Governs data transmission (with rwnd)
● SMSS == sender maximum segment size
● On segment ACK, cwnd += SMSS

● ssthresh – slow start threshold
● Use slow start when cwnd < ssthresh
● Use congestion avoidance when cwnd >
ssthresh

Typically, ssthresh starts at 65535 bytes.

CA: Additive Increase

● On ACK: cwnd += SMSS*SMSS/cwnd
● Takes over when cwnd > ssthresh
● ssthresh = min(cwnd,rwnd) / 2 when

congestion
● If congestion is a timeout, cwnd = SMSS

CA: Multiplicative Decrease

● Appears depending on congestion control
● Most likely [Reno]: 3 Duplicate ACKs

● On a timeout, set cwnd = cwnd / 2

Fast Retransmit [Tahoe]

● Receiver sends duplicate ACKs
● Immediately on out-of-order segment
● Sender receives >= 3 duplicate ACKs
● Immediately retransmit segment

● cwnd = SMSS
● Slow start

● [Reno] Fast Recovery until non-duplicate
ACK

Fast Recovery [Reno, New Reno]

● ssthresh = cwnd / 2
● cwnd = ssthresh [+ 3*SMSS] (in RFC)
● Each time another duplicate ACK arrives,

● cwnd += SMSS
● Transmit new segment if allowed [New Reno]

● When ACK for new data arrives
● cwnd = ssthresh

● If timeout again, slow start with cwnd =
SMSS

Timeout Events [Tahoe, Reno]

Both treat these the same: drop to slow start
ssthresh = cwnd / 2

cwnd = SMSS

Experimenting on Your Own

● getsockopt() – on a TCP socket
● Transfer large amounts of data
● Check out TCP_INFO
● Returns a struct tcp_info;

/usr/include/netinet/tcp.h
struct tcp_info

 u_int8_ttcpi_state;

 u_int8_ttcpi_ca_state;

 u_int8_ttcpi_retransmits;

 u_int8_ttcpi_probes;

 u_int8_ttcpi_backoff;

 u_int8_ttcpi_options;

 u_int8_ttcpi_snd_wscale : 4, tcpi_rcv_wscale : 4;

 u_int32_t tcpi_rto;

 u_int32_t tcpi_ato;

 u_int32_t tcpi_snd_mss;

 u_int32_t tcpi_rcv_mss;

 u_int32_t tcpi_unacked;

 u_int32_t tcpi_sacked;

 u_int32_t tcpi_lost;

 u_int32_t tcpi_retrans;

 u_int32_t tcpi_fackets;

/* Times. */

 u_int32_t tcpi_last_data_sent;

 u_int32_t tcpi_last_ack_sent; /* Not remembered,
sorry. */

 u_int32_t tcpi_last_data_recv;

 u_int32_t tcpi_last_ack_recv;

 /* Metrics. */

 u_int32_t tcpi_pmtu;

 u_int32_t tcpi_rcv_ssthresh;

 u_int32_t tcpi_rtt;

 u_int32_t tcpi_rttvar;

 u_int32_t tcpi_snd_ssthresh;

 u_int32_t tcpi_snd_cwnd;

 u_int32_t tcpi_advmss;

 u_int32_t tcpi_reordering;

 u_int32_t tcpi_rcv_rtt;

 u_int32_t tcpi_rcv_space;

 u_int32_t tcpi_total_retrans;

};

Cheating TCP: Foul Play

● What happens with two TCP streams, one
from each host, on a 10 Mbps link?

Cheating TCP: Foul Play

● What happens with two TCP streams, one
from each host, on a 10 Mbps link?

● Name them host A and host B. What if
host A opens 10 TCP streams? Host B
keeps only 1 TCP stream?

Cheating TCP: Foul Play

● What happens with two TCP streams, one
from each host, on a 10 Mbps link?

● Name them host A and host B. What if
host A opens 10 TCP streams? Host B
keeps only 1 TCP stream?

● Fair sharing across streams...
● No notion of logical peers

P2P Research: Bandwidth Trading

● UVA limited dorm links in dorm rooms
● We had high-speed WiFi between us
● What if we all colluded?
● Merging many TCP flows out-of-band :-)
● Fun senior thesis project
● P2P Bandwidth Trading (economics+CS)

LPTHW EC [10 Points]

Due November 19

Email Wolf

GitHub:

Git it, got it, good.

git clone git://github.com/theonewolf/15-441-Recitation-Sessions.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	page42

