How You're Going to Rule the World

Wolf Richter
Content Distribution Network

- Global
- Increase access bandwidth to objects
- Decrease latency
- Akamai, Limelight, Google, Facebook, …
- Often use DNS to route clients
- Route you to the nearest front-end node
I want:
http://youtu.be/oHg5SJYRHA0
I want: http://youtu.be/oHg5SJYRHA0

YouTuber
I want: http://youtu.be/oHg5SJYRHA0
I want:
http://youtu.be/oHg5SJYRHA0

Routing! With caching

Push to Start

YouTuber
That's important, say, when Koreans from around the world want to listen to Girl's Generation.
Applications!?

- CDN
- letscrate.com – recent startup
 - Basically, your web app with a pro design
 - Literally you add files, and then you get them
- Amazon S3
- Dropbox
- YouTube
- Flickr
What are you Building?

- Framework for content discovery
- and content distribution
- OSPF routing daemons provide both
 - Discovery – reliable flooding mechanism
 - Distribution – addfile intelligently, or cache...
- You are building a framework
- Fully internal routing, designated front-ends
- Route data to clients
Routing Daemons [CP2]

- Communicate via UDP
- Example UDP code uploaded
- Implement OSPF reliable flooding
- Return URLs to clients
 - Routing to another peer
 http://peername:peerport/rd/rdport/object_name
 - Or locally
 http://localhost:port/static/sha256sum
Open Shortest Path First

- But, really, only **bastardized LSAs**
- Implement the sending/receiving exactly
 - LSA Packet
 - LSA ACK Packet
- Network byte order!
- Triggered Updates: node down, new object
- Respect TTLs according to specification
- \(\text{TTL} = 0 \rightarrow \text{Machine offline, delete entries} \)
RD == LSA Hub

• LSAs come in, forward to other neighbors
• Learn a lot from them
 • Graph of network
 • Objects on nodes
• Oh isn't this easier than Project 1!?
• Data structures and algorithms...
Link State Advertisement (LSA)

- Secret: ads make money on the Internet
- But, not quite these kind...
- Update frequency: 30 seconds
Default Values

- Version = 0x01
- TTL = 0x020
- Type = 0x0
- Sequence Number = 0
 - Monotonically increasing
- Number of Link Entries = 1 (receiver)
- Number of Object Entries = 0
Entries Lists

- **Two byte length** in number of items
 - `uint16_t`

- Then entries

- **4 bytes per link entry** (node id's)
 - `uint32_t`

- **Object entries** are arbitrary length
 - Each preceded by **4 byte length**
 - `uint32_t`
In Bytes...

- **Links**

 \[4 \text{ byte node1}] [4 \text{ byte node2}]...

- **Objects**

 \[4 \text{ byte len1}] [\ldots] [4 \text{ byte len2}] [\ldots]...
LSA ACK

- Version = \textcolor{red}{0x01}
- TTL = \textcolor{red}{0x0}
- Type = \textcolor{red}{0x01}
- Sequence Number = same as received
- Number of Link Entries = \textcolor{red}{0}
- Number of Object Entries = \textcolor{red}{0}
What does RD Track?

- **Graph of network** → to find shortest path
- **Object names** → next node, port, sha256
- **Node** → objects
- **Node** → neighbors
- Storing this data is **up to you**
- **Think hard with your partner**
- **This is 60 points**
Rules?

• **Always route via shortest path**
• *Object retrieval looks like:*
 • `front-end → send_file(urlopen(x1))`
Rules?

- Always route via shortest path
- Object retrieval looks like:
 - `front-end → send_file(urlopen(x1))`
 - `x1 → send_file(urlopen(x2))`
Rules?

- Always route via shortest path
- Object retrieval looks like:
 - `front-end → send_file(urlopen(x1))`
 - `x1 → send_file(urlopen(x2))`
 - `x2 → send_file(urlopen(x3))`
Rules?

- Always route via shortest path
- Object retrieval looks like:
 - front-end → send_file(urlopen(x1))
 - x1 → send_file(urlopen(x2))
 - x2 → send_file(urlopen(x3))
 - x3 → send_file(urlopen(x3-static))
Rules?

• **Always route via shortest path**

• **Object retrieval looks like:**
 • `front-end → send_file(urlopen(x1))`
 • `x1 → send_file(urlopen(x2))`
 • `x2 → send_file(urlopen(x3))`
 • `x3 → send_file(urlopen(x3-static))`
 • `x3 send_file ← Flask static server`
Rules?

- Always route via shortest path
- Object retrieval looks like:
 - `front-end` → `send_file(urlopen(x1))`
 - `x1` → `send_file(urlopen(x2))`
 - `x2` → `send_file(urlopen(x3))`
 - `x3` → `send_file(urlopen(x3-static))`
 - `x3` `send_file` ← Flask static server
 - `x2` `send_file` ← `x3` `send_file`
Rules?

- Always route via shortest path
- Object retrieval looks like:
 - front-end \rightarrow send_file(urlopen(x_1))
 - $x_1 \rightarrow$ send_file(urlopen(x_2))
 - $x_2 \rightarrow$ send_file(urlopen(x_3))
 - $x_3 \rightarrow$ send_file(urlopen(x_3-static))
 - x_3 send_file \leftarrow Flask static server
 - x_2 send_file \leftarrow x_3 send_file
 - x_1 send_file \leftarrow x_2 send_file
Rules?

- Always route via shortest path

Object retrieval looks like:

- `front-end → send_file(urlopen(x1))`
- `x1 → send_file(urlopen(x2))`
- `x2 → send_file(urlopen(x3))`
- `x3 → send_file(urlopen(x3-static))`
- `x3 send_file ← Flask static server`
- `x2 send_file ← x3 send_file`
- `x1 send_file ← x2 send_file`
- `front-end ← x1 send_file`
Extra Credit Before: LPTHW

- LPTHW – By November 19
 - Email Wolf
 - What you did, where it is, short report (1-2 paragraphs)
 - How effective was it, how long it takes, what it's missing
Extra Credit PJ2: Caching [10]

- Optional final command-line argument
 - [cache size in bytes] – default 1 Gibibyte
- Choose a caching policy (LRU etc.)
- Save objects fetched remotely in /static/
- Name them according to sha256sum
- ADDFILE for this object to yourself
Extra Credit PJ2: Longest Prefix [10]

- Assume object names have structure
- Based on '/' ('/cmu/csd/)
- Match based on longest prefix matching
- Nodes have \{1 : '/cmu/', 2 : '/cmu/csd/'\}
- Want: Nodes['/cmu/csd/srini'] → 2
- Regular 'files' can be mixed with 'directories'
Extra Credit PJ2: Pipelining [10]

• Modify Flask to maintain **10 connections**
• Global pool
• These **10 service all RD requests**
• Perhaps consider: **Python Synchronized Queue**
 • Get connections off for use
 • Put them back when response received
What's the Deal?

- Choose 2 from the 3 EC's presented
- Turn them in at final submission time
- \([0,10,20]\) points EC on PJ2
- \([0,10]\) points EC from LPTHW
- 30 points EC possible at this point
PJ1 Leaderboard

aditya1
alussier
anandsur
angx
apodolsk
brclark
bstrassm
chunhowt
dcrescim
ebreder
gyang1
hanl1
hongjaic
huiyangx
jchee
jcmacdon
jwloh
kailili
kbaysal
kdalmia
mdan
mengh
mfurman
minjaele
mkahn
moz
mswang
mteh
nsegall
nochoe
phoskins
rggonzal
seunghwl
siyoungo
sjoo
spradhan
syedkar
tbach
tbenschac
tianyec
weishi
xuanzhan
yueyuan
zhuojil
ziccardi
PJ1 Regrades

11AM – 3PM Saturday
GHC 9127
GitHub:

Git it, got it, good.

git clone git://github.com/theonewolf/15-441-Recitation-Sessions.git