

How You're Going to
Rule the World

Wolf Richter

Content Distribution Network

● Global
● Increase access bandwidth to objects
● Decrease latency
● Akamai, Limelight, Google, Facebook, …
● Often use DNS to route clients
● Route you to the nearest front-end node

Push to Start

YouTuber

N1

I want:
http://youtu.be/oHg5SJYRHA0

N6N2

N3
N5N4

http://youtu.be/oHg5SJYRHA0

Push to Start

YouTuber

N1

I want:
http://youtu.be/oHg5SJYRHA0

N6N2

N3
N5N4

Ideal

http://youtu.be/oHg5SJYRHA0

Push to Start

YouTuber

N1

I want:
http://youtu.be/oHg5SJYRHA0

N6N2

N3
N5N4

Routing!

http://youtu.be/oHg5SJYRHA0

Push to Start

YouTuber

N1

I want:
http://youtu.be/oHg5SJYRHA0

N6N2

N3
N5N4

Routing!
With
caching

http://youtu.be/oHg5SJYRHA0

That's important, say, when
Koreans from around the
world want to listen to

Girl's Generation

Applications!?

● CDN
● letscrate.com – recent startup

● Basically, your web app with a pro design
● Literally you add files, and then you get them

● Amazon S3
● Dropbox
● YouTube
● Flickr

http://letscrate.com/

What are you Building?

● Framework for content discovery
● and content distribution
● OSPF routing daemons provide both

● Discovery – reliable flooding mechanism
● Distribution – addfile intelligently, or cache...

● You are building a framework
● Fully internal routing, designated front-ends
● Route data to clients

Routing Daemons [CP2]

● Communicate via UDP
● Example UDP code uploaded
● Implement OSPF reliable flooding
● Return URLs to clients

● Routing to another peer

http://peername:peerport/rd/rdport/object_name
● Or locally

http://localhost:port/static/sha256sum

Open Shortest Path First

● But, really, only bastardized LSAs
● Implement the sending/receiving exactly
● LSA Packet
● LSA ACK Packet
● Network byte order!
● Triggered Updates: node down, new object
● Respect TTLs according to specification
● TTL = 0 → Machine offline, delete entries

RD == LSA Hub

● LSAs come in, forward to other neighbors
● Learn a lot from them

● Graph of network
● Objects on nodes

● Oh isn't this easier than Project 1!?
● Data structures and algorithms...

Link State Advertisement (LSA)
● Secret: ads make money on the Internet
● But, not quite these kind...
● Update frequency: 30 seconds
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Version | TTL | Type |
+-+
| Sender Node ID |
+-+
| Sequence Number |
+-+
| Number of Link Entries |
+-+
| Number of Object Entries |
+-+
| Link Entries... |
+-+
| Object Entries... |
+-+

Default Values

● Version = 0x01
● TTL = 0x020
● Type = 0x0
● Sequence Number = 0

● Monotonically increasing

● Number of Link Entries = 1 (receiver)
● Number of Object Entries = 0

Entries Lists

● Two byte length in number of items
● uint16_t

● Then entries
● 4 bytes per link entry (node id's)

● uint32_t

● Object entries are arbitrary length
● Each preceded by 4 byte length
● uint32_t

In Bytes...

● Links

[4 byte node1][4 byte node2]...
● Objects

[4 byte len1][...][4 byte len2][...]...

LSA ACK

● Version = 0x01
● TTL = 0x0
● Type = 0x01
● Sequence Number = same as received
● Number of Link Entries = 0
● Number of Object Entries = 0

What does RD Track?

● Graph of network → to find shortest path
● Object names → next node, port, sha256
● Node → objects
● Node → neighbors
● Storing this data is up to you
● Think hard with your partner
● This is 60 points

Rules?

● Always route via shortest path
● Object retrieval looks like:

● front-end → send_file(urlopen(x1))

Rules?

● Always route via shortest path
● Object retrieval looks like:

● front-end → send_file(urlopen(x1))
● x1 → send_file(urlopen(x2))

Rules?

● Always route via shortest path
● Object retrieval looks like:

● front-end → send_file(urlopen(x1))
● x1 → send_file(urlopen(x2))
● x2 → send_file(urlopen(x3))

Rules?

● Always route via shortest path
● Object retrieval looks like:

● front-end → send_file(urlopen(x1))
● x1 → send_file(urlopen(x2))
● x2 → send_file(urlopen(x3))
● x3 → send_file(urlopen(x3-static))

Rules?

● Always route via shortest path
● Object retrieval looks like:

● front-end → send_file(urlopen(x1))
● x1 → send_file(urlopen(x2))
● x2 → send_file(urlopen(x3))
● x3 → send_file(urlopen(x3-static))
● x3 send_file ← Flask static server

Rules?

● Always route via shortest path
● Object retrieval looks like:

● front-end → send_file(urlopen(x1))
● x1 → send_file(urlopen(x2))
● x2 → send_file(urlopen(x3))
● x3 → send_file(urlopen(x3-static))
● x3 send_file ← Flask static server
● x2 send_file ← x3 send_file

Rules?

● Always route via shortest path
● Object retrieval looks like:

● front-end → send_file(urlopen(x1))
● x1 → send_file(urlopen(x2))
● x2 → send_file(urlopen(x3))
● x3 → send_file(urlopen(x3-static))
● x3 send_file ← Flask static server
● x2 send_file ← x3 send_file
● x1 send_file ← x2 send_file

Rules?

● Always route via shortest path
● Object retrieval looks like:

● front-end → send_file(urlopen(x1))
● x1 → send_file(urlopen(x2))
● x2 → send_file(urlopen(x3))
● x3 → send_file(urlopen(x3-static))
● x3 send_file ← Flask static server
● x2 send_file ← x3 send_file
● x1 send_file ← x2 send_file
● front-end ← x1 send_file

Extra Credit Before: LPTHW

● LPTHW – By November 19
● Email Wolf
● What you did, where it is, short report (1-2

paragraphs)
● How effective was it, how long it takes, what

it's missing

Extra Credit PJ2: Caching [10]

● Optional final command-line argument
● [cache size in bytes] – default 1 Gibibyte

● Choose a caching policy (LRU etc.)
● Save objects fetched remotely in /static/
● Name them according to sha256sum
● ADDFILE for this object to yourself

Extra Credit PJ2: Longest Prefix [10]

● Assume object names have structure
● Based on '/' ('/cmu/csd/')
● Match based on longest prefix matching
● Nodes have {1 : '/cmu/', 2 : '/cmu/csd/'}
● Want: Nodes['/cmu/csd/srini'] → 2
● Regular 'files' can be mixed with

'directories'

Extra Credit PJ2: Pipelining [10]

● Modify Flask to maintain 10 connections
● Global pool
● These 10 service all RD requests
● Perhaps consider: Python Synchronized

Queue
● Get connections off for use
● Put them back when response received

What's the Deal?

● Choose 2 from the 3 EC's presented
● Turn them it at final submission time
● [0,10,20] points EC on PJ2
● [0,10] points EC from LPTHW
● 30 points EC possible at this point

PJ1 Leaderboard

adityaa1
alussier

anandsur
angx

apodolsk
brclark

bstrassm
chunhowt
dcrescim
ebreder

gyang1
hanl1

hongjaic
huiyangx

jchee
jcmacdon

jwloh
kailili

kbaysal
kdalmia

mdan
mengh

mfurman
minjaele
mkahn

moz
mswang

mteh
nsegall
ochoe

phoskins
rggonzal
seunghwl
siyoungo

sjoo
spradhan
syedkar
tbach

tbenshac
tianyec

weishi
xuanzhan
yueyuan
zhuojil
ziccardi

PJ1 Regrades

11AM – 3PM Saturday
GHC 9127

GitHub:

Git it, got it, good.

git clone git://github.com/theonewolf/15-441-Recitation-Sessions.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	page42

