

Distributed HTTP

Athula Balachandran

Today's Agenda

● Overview of the project
● Overview of Checkpoint 1
● Python Resources Needed
● Routing Daemon Design

Logistics

● Checkpoint 1 – Due on Sunday (30th Oct)
● Sunday better? More time after recitation?

● Finding partners
● Bboards
● Else email me

● Email me your group details
● Partners in the team
● What is your repository name?

– <andrewid>-<andrewid2>-15-441-project2

– eg. abalacha-wolf-15-441-project2

Checkpoint 1 Details
(Website)

Useful Python Resources for the
Checkpoint

● Flask webpage: http://flask.pocoo.org/

● Flask Tutorial: http://flask.pocoo.org/docs/tutorial/

● Check the following functions
● request.args.get() - to parse arguments from the GET request

● request.form.get() - to parse form arguments in the POST request

● request.files() - to get the file data

● Uploading a File: http://flask.pocoo.org/docs/patterns/fileuploads/

● Reading and Writing from files: http://docs.python.org/tutorial/inputoutput.html

● Hash: http://docs.python.org/library/hashlib.html

● Socket Programming: http://docs.python.org/howto/sockets.html

● Split: http://docs.python.org/library/stdtypes.html

http://flask.pocoo.org/
http://flask.pocoo.org/docs/tutorial/
http://flask.pocoo.org/docs/patterns/fileuploads/
http://docs.python.org/tutorial/inputoutput.html
http://docs.python.org/library/hashlib.html
http://docs.python.org/howto/sockets.html
http://docs.python.org/library/stdtypes.html

Handling Large Files

● Get the file
● file = request.files['uploadFile']

● Store it in a temporary file
● tmpname = tempfile.mktemp(prefix='.../static/')
● file.save(tmpname)

● Read 4096 bytes at a time and keep updating the hash
● hash = hashlib.sha256()
● with open(tmpname, 'r') as f:

hash.update(f.read(4096)) # loop

● Move the file to the new location computed using the hash
digest
● shutil.move(tmpname, '.../static/' + hash.hexdigest())

Routing Daemon

● Read the config file and the file list file
● From the config file and the node-name, figure

out the peername, server port, local port and
routing port.

● Start a TCP server at localport and wait for
requests from the Flask application.

Routing Daemon Requests

● GETRD <object-name>
● eg. GETRD athula

● For checkpoint 1, go through the local file-list.

● Suppose there is an entry

– athula /static/e627abdec8

– Return: “OK http://”+peername+”:”+serverport+”/static/e627abdec8”

– OK http://127.0.0.1:5000/static/e627abdec8

– (Note that the e627abdec8 is not a valid sha256sum, it is just a placeholder. Sha256sums
are much longer than this)

– If you didn't know, you can do sha256sum <filename> on your commandline and compare
the sha256sum against the one generated by the python script.

● Suppose there is no entry

– Return “404”

http://127.0.0.1:5000/static/e627abdec8

Routing Daemon Request

● ADDFILE <object> <local-relative-path>
● (Happens at the front end node)
● ADDFILE wolf /static/172356adcc107f8
● Add this to the object, path mapping that is being

stored
● Response: OK
● Response: 404 (say, object does not match the

criteria or some other error.)
● You may be replacing an already existing object to

path mapping

Routing Daemon Request

● Any other request or not well-formed requests
● Send “501”

Project 1 General Overview
(Blackboard based Discussion)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

