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Agenda

● Handling Concurrency
● Project 1 Checkpoint 1 
● Homework 1 Concerns
● Q & A



  

Flashback!

● getaddrinfo() - Prepare to launch!
● socket() - Get the file descriptor!
● bind() - Which port am I on?
● listen() - Will someone please call me?
● connect() - Hey, you!
● accept() - Thank you for calling port 8080!
● send() and recv() - Talk to me, please!
● close and shutdown() - Get out!



  

What do you want to build?
A webserver that can handle multiple concurrent 

connections!



  

What's the problem?
Blocking!



  

What's the solution?
Threading or select()



  

Threading approach

● Did in 15-213??
● Main server blocks on accept()
● Accept incoming connection 
● Fork() child process for each connection
● Pain! 

● Need to manage a pool of threads
● And what if tasks have to communicate?



  

World of select()

● Event driven programming!
● Single process that multiplexes all requests.
● Caveat

● Programming is not so transparent!
● Server no longer acts like it has only one client!



  

How to use select()?

● Give select a set of sockets/file descriptors.
● select() blocks till something happens.

● Data coming in on some socket.
● Able to write to a socket.
● Exception at the socket.

● Once woken up, check for the event and 
service it the way the server would do.



  

select()

#include <sys/select.h>

int select (int  nfds, fd_set*  readfds,       
fd_set*  writefds, fd_set*  exceptfds,   

                struct timeval *timeout);



  

fd_set Datastructure

● Remember, file descriptor is just an integer!
● Datastructure is basically a bit array!
● Helper macros:

FD_ZERO(fd_set* fdset);  /* initializes fdset to have 0s for all fds */

FD_SET(int fd, fd_set* fdset);  /* sets the bit for fd in fdset */

FD_CLR(int fd, fd_set* fdset);  /* clears the bit for fd in fdset */

FD_ISSET(int fd, fd_set* fdset); /* returns 0 if fd is set else non-0 */



  

 select() Parameters

● The FDs between 0 to nfds-1 are checked.
● Check for reading in readfds.
● Check for writing in writefds.
● Check for exception in exceptfds. 
● These fd_sets can be NULL.
● timeout

● NULL – blocking
● else how long to wait for the required condidtion 

before returning to the caller. 



  

Return value, Error states

● Success – number of ready descriptors.
● readfds, writefds and exceptfds are modified 

● Time expired – returns 0 (errno set to EINTR)
● Failure – returns -1

● EBADF, EINTR, EINVAL , ENOMEM



  

Pseudo-code of Usage

● nfds = 0

● Initialize readfds, writefds, exceptfds using FD_ZERO

● Add the listener socket to readfds using FD_SET and update nfds

● For each active connection

● If connection has available read buffer, add fd to readfds (FD_SET)

● If connection has available write buffer, add to writefds (FD_SET)

● Add to exceptfds (FD_SET) – not really needed for this project.

● Update nfds to ensure that the fd falls in the range

● select_return = select(nfds, readfds, writefds, exceptfds, NULL)

● If select_return > 0

● Handle exceptions if any fd in exceptfds is set to 1 (FD_ISSET)

● Read data from  connections for which fd in readfds is set to 1 (FD_ISSET)

● Write data from connections for which fd in writefds is set to 1 (FD_ISSET)

● If listener socket is set to read, accept and handle new connection.

● Else handle error states



  

cp1_checker.py

● ./cp1_checker.py <ip> <port> <#trials> <#writes and reads 
per trial> <max # bytes to write at a time> <#connections> 
● Starts #connections connections to server at ip and port
● Repeat #trials number of times

– Sample #writes and reads per trials connections. 

– Send random number of random bytes to each of these connections 
(with a limit of max # bytes to write at a time).

– Receive and check if all the bytes received are same as the ones that 
are sent.

● If your server cannot handle multiple connections
– Set #connections to 1 and #writes and reads per trial to 1



  

Okay, so you can handle multiple connections!
But that is not enough...



  

Reading data

● Check return value of recv()
● Error – handle the error and clear up state.
● If peer shutdown the connection, clear up state.

● Maintain state
● Maintain a read buffer
● Keep track of the number of bytes left to be read
● May need multiple reads to get all data
● But only one read per socket when select() returns.



  

Writing data

● Check return value of send()
● Error – handle the error and clear up state.
● If peer shutdown the connection, clear up state.

● Maintain state
● Maintain a write buffer
● Keep track of the number of bytes left to be written
● May need multiple writes to send all data
● Number of bytes actually sent should be checked from 

the return value
● Only one write per socket when select() returns.



  

Exceptfds

● For handling out of band data
● Should be read one byte at a time!
● Not really needed for this project.



  

39/59 repositories as of 11pm Sept 13



  

Checkpoint 1 Docs

● Makefile - make sure nothing is hard coded specific to your user; 
should build a file which runs the echo server (name it lisod)

● All of your source code - all .c and .h files

● readme.txt - file containing a brief description of your current 
implementation of server

● tests.txt - file containing a brief description of your testing methods 
for server

● replay.test - a file containing bytes that can be sent to your server as 
a test case

● replay.out - a file containing expected bytes that should be sent as a 
response from your server when provided replay.test

● vulnerabilities.txt - identify at least one vulnerability in your current 
implementation



  

Remember

● Code quality
● Code documentation
● Robustness 

● Handle all errors
● Buffer overflows
● Connection reset by peer



  

Peek into the future

● Checkpoint 2
● Implement HTTP 1.1 parser and persistent 

connections

● Checkpoint 3
● Implement HTTPS handshaking and persistent 

connections via TLS
● Implement CGI server-side.



  

Homework 1 Clarifications



  

Problem 2 

● Ethernet – common medium
● Think of air and two people talking!

● Packets colliding == Two people talking 
together

● When they collide, they should be “polite” about 
trying again!
● Try as soon as they sense silence (collide again!)
● Wait for a fixed time before trying again (collide + 

waste of time!)



  

Wait for a random time before trying again



  

Exponential backoff

● Strategy of doubling the delay interval between each 
retransmission attempt.

● After first collision for a packet,
● Each node selects 0T or 1T

● Second collision for the same packet,
● Node selects 0T, 1T, 2T or 3T

● I th collision for a packet,
● Node selects between 0T to (2^i-1)T

● Read Section 2.6.2 (will be covered in class only next 
Tuesday)



  

Problem 3(a)

● Ideal channel == zero noise!
● Just apply the math and get the answer!
● Surprised? There is an explanation!



  

Any other questions?

Come to our office hours!
Athula  Gates 7609 Wednesday 5-6 PM

Wolf  Gates 9127 Tuesday 11-12 AM
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