

More Project 1 and HW 1 stuff!

Athula Balachandran
Wolfgang Richter

Agenda

● Handling Concurrency
● Project 1 Checkpoint 1
● Homework 1 Concerns
● Q & A

Flashback!

● getaddrinfo() - Prepare to launch!
● socket() - Get the file descriptor!
● bind() - Which port am I on?
● listen() - Will someone please call me?
● connect() - Hey, you!
● accept() - Thank you for calling port 8080!
● send() and recv() - Talk to me, please!
● close and shutdown() - Get out!

What do you want to build?
A webserver that can handle multiple concurrent

connections!

What's the problem?
Blocking!

What's the solution?
Threading or select()

Threading approach

● Did in 15-213??
● Main server blocks on accept()
● Accept incoming connection
● Fork() child process for each connection
● Pain!

● Need to manage a pool of threads
● And what if tasks have to communicate?

World of select()

● Event driven programming!
● Single process that multiplexes all requests.
● Caveat

● Programming is not so transparent!
● Server no longer acts like it has only one client!

How to use select()?

● Give select a set of sockets/file descriptors.
● select() blocks till something happens.

● Data coming in on some socket.
● Able to write to a socket.
● Exception at the socket.

● Once woken up, check for the event and
service it the way the server would do.

select()

#include <sys/select.h>

int select (int nfds, fd_set* readfds,
fd_set* writefds, fd_set* exceptfds,

 struct timeval *timeout);

fd_set Datastructure

● Remember, file descriptor is just an integer!
● Datastructure is basically a bit array!
● Helper macros:

FD_ZERO(fd_set* fdset); /* initializes fdset to have 0s for all fds */

FD_SET(int fd, fd_set* fdset); /* sets the bit for fd in fdset */

FD_CLR(int fd, fd_set* fdset); /* clears the bit for fd in fdset */

FD_ISSET(int fd, fd_set* fdset); /* returns 0 if fd is set else non-0 */

 select() Parameters

● The FDs between 0 to nfds-1 are checked.
● Check for reading in readfds.
● Check for writing in writefds.
● Check for exception in exceptfds.
● These fd_sets can be NULL.
● timeout

● NULL – blocking
● else how long to wait for the required condidtion

before returning to the caller.

Return value, Error states

● Success – number of ready descriptors.
● readfds, writefds and exceptfds are modified

● Time expired – returns 0 (errno set to EINTR)
● Failure – returns -1

● EBADF, EINTR, EINVAL , ENOMEM

Pseudo-code of Usage

● nfds = 0

● Initialize readfds, writefds, exceptfds using FD_ZERO

● Add the listener socket to readfds using FD_SET and update nfds

● For each active connection

● If connection has available read buffer, add fd to readfds (FD_SET)

● If connection has available write buffer, add to writefds (FD_SET)

● Add to exceptfds (FD_SET) – not really needed for this project.

● Update nfds to ensure that the fd falls in the range

● select_return = select(nfds, readfds, writefds, exceptfds, NULL)

● If select_return > 0

● Handle exceptions if any fd in exceptfds is set to 1 (FD_ISSET)

● Read data from connections for which fd in readfds is set to 1 (FD_ISSET)

● Write data from connections for which fd in writefds is set to 1 (FD_ISSET)

● If listener socket is set to read, accept and handle new connection.

● Else handle error states

cp1_checker.py

● ./cp1_checker.py <ip> <port> <#trials> <#writes and reads
per trial> <max # bytes to write at a time> <#connections>
● Starts #connections connections to server at ip and port
● Repeat #trials number of times

– Sample #writes and reads per trials connections.

– Send random number of random bytes to each of these connections
(with a limit of max # bytes to write at a time).

– Receive and check if all the bytes received are same as the ones that
are sent.

● If your server cannot handle multiple connections
– Set #connections to 1 and #writes and reads per trial to 1

Okay, so you can handle multiple connections!
But that is not enough...

Reading data

● Check return value of recv()
● Error – handle the error and clear up state.
● If peer shutdown the connection, clear up state.

● Maintain state
● Maintain a read buffer
● Keep track of the number of bytes left to be read
● May need multiple reads to get all data
● But only one read per socket when select() returns.

Writing data

● Check return value of send()
● Error – handle the error and clear up state.
● If peer shutdown the connection, clear up state.

● Maintain state
● Maintain a write buffer
● Keep track of the number of bytes left to be written
● May need multiple writes to send all data
● Number of bytes actually sent should be checked from

the return value
● Only one write per socket when select() returns.

Exceptfds

● For handling out of band data
● Should be read one byte at a time!
● Not really needed for this project.

39/59 repositories as of 11pm Sept 13

Checkpoint 1 Docs

● Makefile - make sure nothing is hard coded specific to your user;
should build a file which runs the echo server (name it lisod)

● All of your source code - all .c and .h files

● readme.txt - file containing a brief description of your current
implementation of server

● tests.txt - file containing a brief description of your testing methods
for server

● replay.test - a file containing bytes that can be sent to your server as
a test case

● replay.out - a file containing expected bytes that should be sent as a
response from your server when provided replay.test

● vulnerabilities.txt - identify at least one vulnerability in your current
implementation

Remember

● Code quality
● Code documentation
● Robustness

● Handle all errors
● Buffer overflows
● Connection reset by peer

Peek into the future

● Checkpoint 2
● Implement HTTP 1.1 parser and persistent

connections

● Checkpoint 3
● Implement HTTPS handshaking and persistent

connections via TLS
● Implement CGI server-side.

Homework 1 Clarifications

Problem 2

● Ethernet – common medium
● Think of air and two people talking!

● Packets colliding == Two people talking
together

● When they collide, they should be “polite” about
trying again!
● Try as soon as they sense silence (collide again!)
● Wait for a fixed time before trying again (collide +

waste of time!)

Wait for a random time before trying again

Exponential backoff

● Strategy of doubling the delay interval between each
retransmission attempt.

● After first collision for a packet,
● Each node selects 0T or 1T

● Second collision for the same packet,
● Node selects 0T, 1T, 2T or 3T

● I th collision for a packet,
● Node selects between 0T to (2^i-1)T

● Read Section 2.6.2 (will be covered in class only next
Tuesday)

Problem 3(a)

● Ideal channel == zero noise!
● Just apply the math and get the answer!
● Surprised? There is an explanation!

Any other questions?

Come to our office hours!
Athula Gates 7609 Wednesday 5-6 PM

Wolf Gates 9127 Tuesday 11-12 AM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

