















## Past the Nyquist Limit

- More aggressive encoding can increase the channel bandwidth.
  - Example: modems
    - · Same frequency number of symbols per second
    - · Symbols have more possible values



- Every transmission medium supports transmission in a certain frequency range.
  - The channel bandwidth is determined by the transmission medium and the quality of the transmitter and receivers
  - Channel capacity increases over time

15-441 Fall 2011

© CMU 2005-2011

















































































































## TCP (Summary)



- · General loss recovery
  - Stop and wait
  - Selective repeat
- TCP sliding window flow control
- TCP state machine
- · TCP loss recovery
  - · Timeout-based
  - RTT estimation
  - Fast retransmit
  - · Selective acknowledgements

15-441 Fall 2011

© CMU 2005-2011

## TCP (Summary)



- Congestion collapse
  - Definition & causes
- · Congestion control
  - Why AIMD?
  - · Slow start & congestion avoidance modes
  - ACK clocking
  - Packet conservation
- TCP performance modeling
  - · How does TCP fully utilize a link?
    - · Role of router buffers

15-441 Fall 2011

© CMU 2005-2011





# Typical Internet Queueing FIFO (scheduling discipline) + drop-tail (drop policy) Cong control at edges No flow differentiation Lock out Random drop Drop front Full queues Early random drop (RED) Explicit congestion notification decbit













### **Admission Control** If U is convex → inelastic Delay-adaptive applications • U(number of flows) is no longer monotonically increasing · Need admission control to maximize total utility BW Admission control → deciding when adding more people would reduce overall utility · Basically avoids overload 15-441 Fall 2011 © CMU 2005-2011



© CMU 2005-2011

15-441 Fall 2011





























I am here

© CMU 2005-2011

15-441 Fall 2011



























© CMU 2005-2011

Victim System
15-441 Fall 2011

## Wireless is challenging Assumptions made for the wired world don't hold Ad-hoc wireless networks Need routing protocol but mobility and limited capacity are problems On demand can reduce load; broadcast reduces overhead Special case 1 – Sensor networks Power is key concern Trade communication for computation Special case 2 – Vehicular networks No power constraints but high mobility makes routing even harder, geographical routing

© CMU 2005-2011

102

15-441 Fall 2011





















