15-441: Computer Networking

Lecture 24: Ad-Hoc Wireless Networks
Scenarios and Roadmap

- **Point to point wireless networks (last lecture)**
 - Example: your laptop to CMU wireless
 - Challenges: Poor and variable link quality, hidden and exposed terminals

- **Ad hoc networks (no infrastructure)**
 - Example: military surveillance network
 - Extra challenges: Routing and possible mobility

- **Sensor networks (ad hoc++)**
 - Example: network to monitor temperatures in a volcano
 - Extra challenge: serious resource constraints

- **Vehicular networks (ad hoc+++)**
 - Example: vehicle-2-vehicle game network
 - Extra challenge: *extreme* mobility
Wireless Challenges (review)

- Interference causes losses, which TCP handles poorly
 - Collisions
 - Multipath interference
 - Environmental (e.g. microwaves)
 - Hidden & exposed terminals
- Contention makes it slow
- Solutions at the Link Layer
 - Local retransmissions
 - RTS/CTS
Ad Hoc Networks

- All the challenges of wireless, plus:
 - No fixed infrastructure
 - Mobility (on short time scales)
 - Chaotically decentralized
 - Multi-hop!
- Nodes are both traffic sources/sinks and forwarders, no specialized routers
- The biggest challenge: routing
Ad Hoc Routing

- Find multi-hop paths through network
 - Adapt to new routes and movement / environment changes
 - Deal with interference and power issues
 - Scale well with # of nodes
 - Localize effects of link changes
Traditional Routing vs Ad Hoc

- **Traditional network:**
 - Well-structured
 - $\sim O(N)$ nodes & links
 - All links work \sim well

- **Ad Hoc network**
 - $O(N^2)$ links - but most are bad!
 - Topology may be really weird
 - Reflections & multipath cause strange interference
 - Change is frequent

![Diagram showing network topologies](attachment:image.png)
Problems Using DV or LS

- DV loops are very expensive
 - Wireless bandwidth \ll fiber bandwidth...
- LS protocols have high overhead
- N^2 links cause very high cost
- Periodic updates waste power
- Need fast, frequent convergence
Proposed Protocols

- Destination-Sequenced Distance Vector (DSDV)
 - Addresses DV loops
- Ad Hoc On-Demand Distance Vector (AODV)
 - Forwarders store route info
- Dynamic Source Routing (DSR)
 - Route stored in the packet header

- Let’s look at DSR
DSR

- Source routing keeps changes local
 - Intermediate nodes can be out of date
- On-demand route discovery
 - Don’t need periodic route advertisements

- (Design point: on-demand may be better or worse depending on traffic patterns…)
DSR Components

- **Route discovery**
 - The mechanism by which a sending node obtains a route to destination

- **Route maintenance**
 - The mechanism by which a sending node detects that the network topology has changed and its route to destination is no longer valid
DSR Route Discovery

• Route discovery - basic idea
 • **Source** broadcasts route-request to **Destination**
 • Each node forwards request by adding own address and re-broadcasting
 • Requests propagate outward until:
 • Target is found, or
 • A node that has a route to **Destination** is found
C Broadcasts Route Request to F
C Broadcasts Route Request to F
H Responds to Route Request

```
Source
C  

A  D

B

H

G,H,F

Destination
F
```
C Transmits a Packet to F
Forwarding Route Requests

- A request is forwarded if:
 - Node doesn’t know the destination
 - Node not already listed in recorded source route (loop avoidance)
 - Node has not seen request with same sequence number (duplicate suppression)
 - IP TTL field may be used to limit scope

- Destination copies route into a Route-reply packet and sends it back to **Source**
Route Cache

- All source routes learned by a node are kept in Route Cache
 - Reduces cost of route discovery
- If intermediate node receives RR for destination and has entry for destination in route cache, it responds to RR and does not propagate RR further
- Nodes overhearing RR/RP may insert routes in cache
Sending Data

- Check cache for route to destination
- If route exists then
 - If reachable in one hop
 - Send packet
 - Else insert routing header to destination and send
- If route does not exist, buffer packet and initiate route discovery
Discussion

• Source routing is good for on demand routes instead of a priori distribution
• Route discovery protocol used to obtain routes on demand
 • Caching used to minimize use of discovery
• Periodic messages avoided
• But need to buffer packets
• How do you decide between links?
Forwarding Packets is Expensive

- Throughput of 802.11b =~ 11Mbits/s
 - In reality, you can get about 5.
- What is throughput of a chain?
 - A -> B -> C
 - A -> B -> C -> D
 - Assume minimum power for radios.
- Routing metric should take this into account
ETX Routing metric

• Measure each link’s delivery probability with broadcast probes (& measure reverse)

• \[P(\text{delivery}) = \frac{1}{df \times dr} \] (ACK must be delivered too)

• Link ETX = \[1 / P(\text{delivery}) \]

• Route ETX = sum of link ETX

• (Assumes all hops interfere - not true, but seems to work okay so far)
Capacity of Multi-Hop Network

- Assume N nodes, each wants to talk to everyone else. What total throughput (ignore previous slide to simplify things)
 - O(n) concurrent transmissions. Great! But:
 - Each has length O(\sqrt{n}) (network diameter)
 - So each Tx uses up \sqrt{n} of the O(n) capacity.
 - Per-node capacity scales as 1/\sqrt{n}
 - Yes - it goes down! More time spent Tx’ing other peoples packets…
- But: If communication is local, can do much better, and use cool tricks to optimize
 - Like multicast, or multicast in reverse (data fusion)
 - Hey, that sounds like … a sensor network!
Vehicular Ad-Hoc Networks

- What can we use as highly mobile and powerful ad hoc network nodes? **Cars**!
- Potential applications for VANETs
 - Collision avoidance
 - Virtual traffic signals
 - (Semi-)Autonomous driving
 - Infotainment
Vehicular Networks – Challenges?

- Extreme mobility
 - DSR won’t work if the routes keep changing
- Scale
 - Possibly the largest ever ad-hoc networks
- Topology
 - Deployment/density not controlled by designer (e.g., highway vs city)
 - Gradual deployment (new cars equipped from the factory in the near future)
VANET Routing – Simple case

- Topology based routing
 - DSR won’t work because the nodes keep changing
 - Can form clusters and route through cluster heads (LORA_CBF)

- Geographical routing
 - Use relative position between node, source and destination to, on the fly, decide whether to forward or not (GPSR)
VANET Routing – General case

- Cities, rural areas
 - Topology-based routing fails, geographical routing harder
 - Local minima/network holes: no neighbor is closer to the destination than we are
 - Greedy Perimeter Stateless Routing (GPSR) routes around the perimeter
 - What we would really want
 - To have a density map of the network to help us choose forwarders
VANET Routing – General case

- Learning about node density in VANETs
 - Use road maps and statistical traffic information (A-CAR)
 - Coarse-grained
 - Local, neighbor based estimation
 - Local optimum != global optimum
 - Online, large scale estimation
 - High overhead
- No perfect solution – open research topic
FCC Spectral Map

- Broadcast TV
- Wi-Fi (ISM)
White Spaces

- Termination of Analog TV (54 MHz and 806 MHz)
 - Can we use the frequency spectrum for wireless broadband Internet access
- White Spaces are the Unoccupied TV Channels
- Challenge: Other devices might be using the spectra
 - Microphones
 - TV Stations
- Need to detect the presence of “primary users”
Important Lessons

- Wireless is challenging
 - Assumptions made for the wired world don’t hold
- Ad-hoc wireless networks
 - Need routing protocol but mobility and limited capacity are problems
 - On demand can reduce load; broadcast reduces overhead
- Special case – Vehicular networks
 - No power constraints but high mobility makes routing even harder, geographical routing