
15-441 Computer Networking

Web Caching,
Content Delivery Networks,

Consistent Hashing

15-441 Fall 2011 2Caching/CDN/Hashing

Web history

• 1945: Vannevar Bush, “As we may think”, Atlantic
Monthly, July, 1945.
• describes the idea of a distributed hypertext system.
• a “memex” that mimics the “web of trails” in our minds.

• 1989: Tim Berners-Lee (CERN) writes internal proposal to
develop a distributed hypertext system
• connects “a web of nodes with links”.
• intended to help CERN physicists in large projects

share and manage information
• 1990: Tim BL writes graphical browser for NeXT

machines.

15-441 Fall 2011 3Caching/CDN/Hashing 3

Web history (cont)

• 1992

• NCSA server released

• 26 WWW servers worldwide

• 1993

• Marc Andreessen releases
first version of NCSA Mosaic
(Windows, Mac, Unix).

• Web (port 80) traffic at 1% of NSFNET backbone traffic.

• Over 200 WWW servers worldwide.

• 1994

• Andreessen and colleagues leave NCSA to form "Mosaic
Communications Corp" (Netscape).

15-441 Fall 2011 4Caching/CDN/Hashing 4

Typical Workload (Web Pages)

• Multiple (typically small) objects per page
• File sizes are heavy-tailed
• Embedded references
• This plays havoc with performance. Why?
• Solutions?

•Lots of small objects
means & TCP
•3-way handshake
•Lots of slow starts
•Extra connection state

15-441 Fall 2011 5Caching/CDN/Hashing 5

File Size and References Distributions

• File sizes
• Pareto distribution for tail
• Lognormal for body of distribution

• Number of embedded references also Pareto
Pareto: kxm

k/xk+1

Probability density
function:

Pr(X < x) = 1 - (xm/x)k

Cumulative distribution
function:

Log-Normal
Probability density
function:

15-441 Fall 2011 6Caching/CDN/Hashing 6

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

Web Proxy Caches

• User configures
browser: Web
accesses via cache

• Browser sends all
HTTP requests to
cache
• Object in cache: cache

returns object
• Else cache requests

object from origin
server, then returns
object to client

15-441 Fall 2011 7Caching/CDN/Hashing 7

No Caching Example (1)

Assumptions
• Average object size = 100,000 bits
• Avg. request rate from institution’s

browser to origin servers = 15/sec
• Delay from institutional router to

any origin server and back to router
= 2 sec

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 100%
• Total delay = Internet delay + access

delay + LAN delay
 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

15-441 Fall 2011 8Caching/CDN/Hashing 8

No Caching Example (2)

Possible solution
• Increase bandwidth of access link

to, say, 10 Mbps
• Often a costly upgrade

Consequences
• Utilization on LAN = 15%
• Utilization on access link = 15%
• Total delay = Internet delay + access

delay + LAN delay
 = 2 sec + msecs + msecs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

15-441 Fall 2011 9Caching/CDN/Hashing 9

W/Caching Example (3)

Install cache
• Suppose hit rate is .4
Consequence
• 40% requests will be satisfied almost

immediately (say 10 msec)
• 60% requests satisfied by origin server
• Utilization of access link reduced to 60%,

resulting in negligible delays
• Weighted average of delays
 = .6*2 sec + .4*10msecs < 1.3 secs

origin
servers

public
 Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

15-441 Fall 2011 10Caching/CDN/Hashing 10

HTTP Caching

• Clients often cache documents
• Challenge: update of documents
• If-Modified-Since requests to check

• HTTP 0.9/1.0 used just date
• HTTP 1.1 has an opaque “entity tag” (could be a file signature,

etc.) as well
• When/how often should the original be checked for

changes?
• Check every time?
• Check each session? Day? Etc?
• Use Expires header

• If no Expires, often use Last-Modified as estimate

15-441 Fall 2011 11Caching/CDN/Hashing 11

Example Cache Check Request

GET / HTTP/1.1
Accept: */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7a11f-10ed-3a75ae4a"
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT

5.0)
Host: www.intel-iris.net
Connection: Keep-Alive

15-441 Fall 2011 12Caching/CDN/Hashing 12

Example Cache Check Response

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1

OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7a11f-10ed-3a75ae4a"

15-441 Fall 2011 13Caching/CDN/Hashing 13

Problems

• Over 50% of all HTTP objects are uncacheable – why?
• Not easily solvable

• Dynamic data  stock prices, scores, web cams
• CGI scripts  results based on passed parameters

• Obvious fixes
• SSL  encrypted data is not cacheable

• Most web clients don’t handle mixed pages well many generic
objects transferred with SSL

• Cookies  results may be based on passed data
• Hit metering  owner wants to measure # of hits for revenue, etc.

15-441 Fall 2011 14Caching/CDN/Hashing 14

Caching Proxies – Sources for Misses

• Capacity
• How large a cache is necessary or equivalent to infinite
• On disk vs. in memory  typically on disk

• Compulsory
• First time access to document
• Non-cacheable documents

• CGI-scripts
• Personalized documents (cookies, etc)
• Encrypted data (SSL)

• Consistency
• Document has been updated/expired before reuse

15-441 Fall 2011 15Caching/CDN/Hashing 15

origin server
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia

Content Distribution Networks (CDNs)

• The content providers are the
CDN customers.

• Content replication
• CDN company installs hundreds

of CDN servers throughout
Internet
• Close to users

• CDN replicates its customers’
content in CDN servers. When
provider updates content, CDN
updates servers

15-441 Fall 2011 16Caching/CDN/Hashing 16

http://www.akamai.com/html/technology/nui/news/index.html

15-441 Fall 2011 17Caching/CDN/Hashing 17

Content Distribution Networks &
Server Selection

• Replicate content on many servers
• Challenges

• How to replicate content
• Where to replicate content
• How to find replicated content
• How to choose among known replicas
• How to direct clients towards replica

15-441 Fall 2011 18Caching/CDN/Hashing 18

Server Selection

• Which server?
• Lowest load  to balance load on servers
• Best performance  to improve client performance

• Based on Geography? RTT? Throughput? Load?

• Any alive node  to provide fault tolerance
• How to direct clients to a particular server?

• As part of routing  anycast, cluster load balancing
• Not covered 

• As part of application  HTTP redirect
• As part of naming  DNS

15-441 Fall 2011 19Caching/CDN/Hashing 19

Application Based

• HTTP supports simple way to indicate that Web page has moved
(30X responses)

• Server receives Get request from client
• Decides which server is best suited for particular client and object
• Returns HTTP redirect to that server

• Can make informed application specific decision
• May introduce additional overhead 

multiple connection setup, name lookups, etc.
• While good solution in general, but…

• HTTP Redirect has some design flaws – especially with current
browsers

15-441 Fall 2011 20Caching/CDN/Hashing 20

Naming Based

• Client does name lookup for service
• Name server chooses appropriate server address

• A-record returned is “best” one for the client
• What information can name server base decision on?

• Server load/location  must be collected
• Information in the name lookup request

• Name service client  typically the local name server for client

15-441 Fall 2011 21Caching/CDN/Hashing 21

How Akamai Works

• Clients fetch html document from primary server
• E.g. fetch index.html from cnn.com

• URLs for replicated content are replaced in html
• E.g. replaced with

• Client is forced to resolve aXYZ.g.akamaitech.net
hostname

Note: Nice presentation on Akamai at
www.cs.odu.edu/~mukka/cs775s07/Presentations/mklein.pdf

15-441 Fall 2011 22Caching/CDN/Hashing 22

How Akamai Works

• How is content replicated?
• Akamai only replicates static content (*)
• Modified name contains original file name
• Akamai server is asked for content

• First checks local cache
• If not in cache, requests file from primary server and

caches file

* (At least, the version we’re talking about today. Akamai actually lets sites write
code that can run on Akamai’s servers, but that’s a pretty different beast)

15-441 Fall 2011 23Caching/CDN/Hashing 23

How Akamai Works

• Root server gives NS record for akamai.net
• Akamai.net name server returns NS record for

g.akamaitech.net
• Name server chosen to be in region of client’s name

server
• TTL is large

• G.akamaitech.net nameserver chooses server in region
• Should try to chose server that has file in cache - How

to choose?
• Uses aXYZ name and hash
• TTL is small  why?

15-441 Fall 2011 24Caching/CDN/Hashing 24

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level
DNS server

Akamai low-level DNS
server

Nearby matching
Akamai server

11

6
7

8

9

10

Get
index.
html

Get /cnn.com/foo.jpg

12

Get foo.jpg

5

15-441 Fall 2011 25Caching/CDN/Hashing 25

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level
DNS server

Akamai low-level DNS
server

7

8

9

10

Get
index.
html

Get
/cnn.com/foo.jpg

Nearby matching
Akamai server

Assuming timeout
 on NS record

15-441 Fall 2011 26Caching/CDN/Hashing 26

Simple Hashing

• Given document XYZ, we need to choose a server to use
• Suppose we use modulo
• Number servers from 1…n

• Place document XYZ on server (XYZ mod n)
• What happens when a servers fails? n  n-1

• Same if different people have different measures of n

• Why might this be bad?

15-441 Fall 2011 27Caching/CDN/Hashing 27

Consistent Hash

• “view” = subset of all hash buckets that are visible
• Desired features

• Smoothness – little impact on hash bucket contents
when buckets are added/removed

• Spread – small set of hash buckets that may hold an
object regardless of views

• Load – across all views # of objects assigned to hash
bucket is small

15-441 Fall 2011 28Caching/CDN/Hashing 28

Consistent Hash – Example

• Monotone  addition of bucket does not cause
movement between existing buckets

• Spread & Load  small set of buckets that lie
near object

• Balance  no bucket is responsible for large
number of objects

• Construction
• Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n.

• Map object to random position on
unit interval

• Hash of object = closest bucket

0

4

8

12
Bucket

14

15-441 Fall 2011 29Caching/CDN/Hashing

Consistent Hashing

• Main idea:
• map both keys and nodes to the same (metric) identifier space
• find a “rule” how to assign keys to nodes

Ring is one option.

15-441 Fall 2011 30Caching/CDN/Hashing

Consistent Hashing

• The consistent hash function assigns each node and key
an m-bit identifier using SHA-1 as a base hash function

• Node identifier: SHA-1 hash of IP address

• Key identifier: SHA-1 hash of key

15-441 Fall 2011 31Caching/CDN/Hashing

• m bit identifier space for both keys and nodes

• Key identifier: SHA-1(key)

Key=“LetItBe” ID=60SHA-1

IP=“198.10.10.1” ID=123SHA-1
• Node identifier: SHA-1(IP address)

•How to map key IDs to node IDs?

Identifiers

15-441 Fall 2011 32Caching/CDN/Hashing

Rule: A key is stored at its successor: node with next higher or equal ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent Hashing Example

15-441 Fall 2011 33Caching/CDN/Hashing

Consistent Hashing Properties

• Load balance: all nodes receive roughly the same
number of keys

• For N nodes and K keys, with high probability

• each node holds at most (1+ε)K/N keys
• (provided that K is large enough compared to N)

15-441 Fall 2011 34Caching/CDN/Hashing 34

Consistent Hash – Example

• Monotone  addition of bucket does not cause
movement between existing buckets

• Spread & Load  small set of buckets that lie
near object

• Balance  no bucket is responsible for large
number of objects

• Construction
• Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n.

• Map object to random position on
unit interval

• Hash of object = closest bucket

0

4

8

12
Bucket

14

15-441 Fall 2011 35Caching/CDN/Hashing

Load Balance

• Redirector knows all CDN server Ids
• Can track approximate load (or delay)
• To balance load:

• Wi = Hash(URL, ip of si) for all i
• Sort Wi from high to low
• find first server with low enough load

• Benefits?

• How should “load” be measured?

35 15-441 Fall 2011 36Caching/CDN/Hashing

Consistent Hashing not just for CDN

• Finding a nearby server for an object in a CDN uses
centralized knowledge.

• Consistent hashing can also be used in a distributed
setting

• P2P systems like BitTorrent, e.g., project 3, need a way of
finding files.

• Consistent Hashing to the rescue.

36

15-441 Fall 2011 37Caching/CDN/Hashing

Chord: Design Goals

• Load balance: Chord acts as a distributed hash
function, spreading keys evenly over the nodes.

• Decentralization: Chord is fully distributed: no node is
more important than any other.

• Scalability: The cost of a Chord lookup grows as the
log of the number of nodes, so even very large
systems are feasible.

• Availability: Chord automatically adjusts its internal
tables to reflect newly joined nodes as well as node
failures, ensuring that the node responsible for a key
can always be found.

15-441 Fall 2011 38Caching/CDN/Hashing

N32

N90

N123

0

Hash(“LetItBe”) = K60

N10

N55

Where is “LetItBe”?

“N90 has K60”

K60

Lookups strategies

• Every node knows its successor in the ring
• Requires O(N) lookups

15-441 Fall 2011 39Caching/CDN/Hashing

N120

N80
80 + 20

N112

N96

N16

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26

Reducing Lookups: Finger Tables

• Each node knows m other nodes in the ring (it has m fingers)
• Increase distance exponentially
• Finger i points to successor of n+2i-1 i=1..m

15-441 Fall 2011 40Caching/CDN/Hashing

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Faster Lookups

• Lookups are O(log N) hops N32 finger table
F0 points to successor(32+20) = 60
F1 points to successor(32+21) = 60
F2 points to successor(32+22) = 60
F3 points to successor(32+23) = 60
F4 points to successor(32+24) = 60
F5 points to successor(32+25) = 80
F6 points to successor(32+26) = 99

Look for a node
identifier in the finger
table that is less then the
key identifier and closest
in the ID space to the
key identifier

15-441 Fall 2011 41Caching/CDN/Hashing

Summary of Performance Results

• Efficient: O(log N) messages per lookup

• Scalable: O(log N) state per node

• Robust: survives massive membership changes

15-441 Fall 2011 42Caching/CDN/Hashing

Joining the Ring

• Three step process
• Initialize all fingers of new node
• Update fingers of existing nodes
• Transfer keys from successor to new node

• Two invariants to maintain
• Each node’s finger table is correctly maintained
• successor(k) is responsible for k (objects stored in

correct place)

15-441 Fall 2011 43Caching/CDN/Hashing

• Locate any node p in the ring
• Ask node p to lookup fingers of new node

N36

1. Lookup(37,38,40,…,100,164)

N60

N40

N5

N20
N99

N80

Join: Initialize New Node’s
Finger Table

15-441 Fall 2011 44Caching/CDN/Hashing

N36

N60

N40

N5

N20
N99

N80

Join: Update Fingers of
Existing Nodes

• New node calls update function on existing nodes

n becomes the ith
fingerprint of node p if p
precedes n by at least 2i-1

and ith finger of node p
succeeds n.

15-441 Fall 2011 45Caching/CDN/Hashing

Copy keys 21..36
from N40 to N36

K30
K38

N36

N60

N40

N5

N20
N99

N80

K30

K38

Join: Transfer Keys

• Only keys in the range are transferred

15-441 Fall 2011 46Caching/CDN/Hashing

N120

N102

N80

N85

N10

Lookup(85)

Handling Failures

• Problem: Failures could cause incorrect lookup
• Solution: Fallback: keep track of a list of immediate

successors

15-441 Fall 2011 47Caching/CDN/Hashing

Handling Failures

• Use successor list
• Each node knows r immediate successors
• After failure, will know first live successor
• Correct successors guarantee correct lookups

• Guarantee with some probability
• Can choose r to make probability of lookup failure

arbitrarily small

15-441 Fall 2011 48Caching/CDN/Hashing

Joining/Leaving overhead

• When a node joins (or leaves) the network, only a fraction
of the keys are moved to a different location.

• For N nodes and K keys, with high probability
• when node N+1 joins or leaves, O(K/N) keys change

hands, and only to/from node N+1

15-441 Fall 2011 49Caching/CDN/Hashing

Summary

• Caching improves web performance
• Caching only at client is only partial solution
• Content Delivery Networks move data closer to user,

maintain consistency, balance load
• Consistent Caching maps keys AND buckets into the

same space
• Consistent caching can be fully distributed, useful in P2P

systems using structured overlays

49

