i‘, 15-441 Computer Networking

Web Caching,
Content Delivery Networks,
Consistent Hashing

Web history “.

* 1945: Vannevar Bush, “As we may think”, Atlantic
Monthly, July, 1945.

« describes the idea of a distributed hypertext system.
* a “memex” that mimics the “web of trails” in our minds.

» 1989: Tim Berners-Lee (CERN) writes internal proposal to
develop a distributed hypertext system

» connects “a web of nodes with links”.

« intended to help CERN physicists in large projects
share and manage information

+ 1990: Tim BL writes graphical browser for NeXT
machines.

15-441 Fall 2011 Caching/CDN/Hashing 2

Web history (cont) “

. 1992 102000000 J—

91800000 —hetive

* NCSA server released stseoce0

71400000

+ 26 WWW servers worldwide

51000000

a0s00000

* 1993 30600000
20400000

* Marc Andreessen releases ..

first version of NCSA Mosaic 0
(Windows, Mac, Unix). L

+ Web (port 80) traffic at 1% of NSFNET backbone traffic.
« Over 200 WWW servers worldwide.
+ 1994

« Andreessen and colleagues leave NCSA to form "Mosaic
Communications Corp" (Netscape).

15-441 Fall 2011 Caching/CDN/Hashing 3

Typical Workload (Web Pages) “

 Multiple (typically small) objects per page

* File sizes are heavy-tailed

« Embedded references

* This plays havoc with performance. Why?

* Solutions?
*Lots of small objects
means & TCP

*3-way handshake

*Lots of slow starts
*Extra connection state

15-441 Fall 2011 Caching/CDN/Hashing 4

File Size and References Distributions “

* File sizes
» Pareto distribution for tail

» Lognormal for body of distribution

* Number of embedded references also Pareto

Pareto: kx,, F/x*1

Probability density
function: function:

Pr(X<x)=1- (x/x)*

Cumulative distribution

Log-Normal

Probability density
1 function:

osf

ool
o 2 3 3 s

15-441 Fall 2011 Caching/CDN/Hashing

Web Proxy Caches

"N

» User configures

browser: Web
accesses via cache

» Browser sends all
HTTP requests to
cache

+ Object in cache: cache
returns object

» Else cache requests
object from origin
server, then returns
object to client

origin
server

origin
server

15-441 Fall 2011 Caching/CDN/Hashing

No Caching Example (1)

"N

Assumptions
» Average object size = 100,000 bits

browser to origin servers = 15/sec

« Delay from institutional router to
any origin server and back to router|
=2sec

Consequences

« Utilization on LAN = 15%

« Utilization on access link = 100%

» Avg. request rate from institution’s @\

« Totaldelay = Internet delay + access institutional

delay + LAN delay
= 2 sec + minutes + milliseconds

@ origin
@ servers

public

Internet _@

1.5 Mbps
access link

10 Mbps LAN

15-441 Fall 2011 Caching/CDN/Hashing

No Caching Example (2)

"N

Possible solution

» Increase bandwidth of access link
to, say, 10 Mbps

« Often a costly upgrade

Consequences
« Utilization on LAN = 15%
« Utilization on access link = 15%
+ Total delay = Internet delay + access
delay + LAN delay
= 2 sec + msecs + msecs

@\ public

Internet

institutional
network

B

@ origin
@ servers

4

10 Mbps
access link

10 Mbps LAN

15-441 Fall 2011 Caching/CDN/Hashing

W/Caching Example (3) “

Install cache a -
« Suppose hit rate is .4 @ @ origin
Consequence @\ ' servers
* 40% requests will be satisfied almost public
immediately (say 10 msec) Internet _@
60% requests satisfied by origin server
Utilization of access link reduced to 60%,
resulting in negligible delays
Weighted average of delays
= .6*2 sec + .4*10msecs < 1.3 secs

1.5 Mbps
access link

institutional

petwork 10 Mbps LAN

HTTP Caching i‘,

» Clients often cache documents
» Challenge: update of documents

« If-Modified-Since requests to check
« HTTP 0.9/1.0 used just date

« HTTP 1.1 has an opaque “entity tag” (could be a file signature,
etc.) as well

* When/how often should the original be checked for
changes?

» Check every time?
» Check each session? Day? Etc?

» Use Expires header
« If no Expires, often use Last-Modified as estimate

15-441 Fall 2011 Caching/CDN/Hashing 10

institutional
cache
15-441 Fall 2011 Caching/CDN/Hashing 9
Example Cache Check Request “,

GET/HTTP/1.1

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
If-None-Match: "7a11f-10ed-3a75ae4a"

User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT
5.0)

Host: www.intel-iris.net
Connection: Keep-Alive

15-441 Fall 2011 Caching/CDN/Hashing 11

Example Cache Check Response “

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT

Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1
OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24

Connection: Keep-Alive
Keep-Alive: timeout=15, max=100
ETag: "7a11f-10ed-3a75ae4a"

15-441 Fall 2011 Caching/CDN/Hashing 12

Problems i‘.

» Over 50% of all HTTP objects are uncacheable — why?
* Not easily solvable

« Dynamic data - stock prices, scores, web cams

» CGl scripts - results based on passed parameters
+ Obvious fixes

+ SSL - encrypted data is not cacheable

» Most web clients don’t handle mixed pages well >many generic
objects transferred with SSL

« Cookies - results may be based on passed data
+ Hit metering > owner wants to measure # of hits for revenue, etc.

15-441 Fall 2011 Caching/CDN/Hashing 13

Caching Proxies — Sources for Misses i‘,

» Capacity
* How large a cache is necessary or equivalent to infinite
» On disk vs. in memory - typically on disk

« Compulsory
* First time access to document

* Non-cacheable documents
* CGl-scripts
+ Personalized documents (cookies, etc)
+ Encrypted data (SSL)

» Consistency
» Document has been updated/expired before reuse

15-441 Fall 2011 Caching/CDN/Hashing 14

Content Distribution Networks (CDNs) i‘,

» The content providers are the

origin server
CDN customers.

in North America
» Content replication
« CDN company installs hundreds
of CDN servers throughout
Internet CDN distribution node
+ Close to users

* CDN replicates its customers’ @
content in CDN servers. When / \
provider updates content, CDN l

updates servers @ @

CDN server
. R CDN server
in S. America CDN server . .
. in Asia
in Europe
15-441 Fall 2011 Caching/CDN/Hashing 15

"N

» Logln | Create Account | Help | Subscribe | Firehose

fm Political Sites Scale Up For Election Traffic
ain
A Posted by timothy on Tuesday November 04, @12:15PM
from the hearken-are-those-trumpets det.
AskSlashdot
Books miller50 writes
oo “News sites and political blogs are expecting extraordinary trafiic tonight as
Americans track results of the Presidential election, and are scaling their
EamEe infrastructure to meet the challenge. Yahoo anticipates its Election Night traffic may
Hardware be three times the volume seen in 2004, when it had 80 million page views on Election

T Day and 142 million more visits the following day. Hosting companies say customers
have been ordering extra servers and load balancing senvices, while content delivery
networks are also expecting a busy night. Will traffic approach record levels?

%
Ingex Akamai's {5t Usage Index, which tracks traffc to its customer news sites, is one §

dle

Interviews metric to watch."

http://www.akamai.com/html/technology/nui/news/index.html

15-441 Fall 2011 Caching/CDN/Hashing 16

Content Distribution Networks & i‘.

Server Selection

* Replicate content on many servers
» Challenges
» How to replicate content
* Where to replicate content
» How to find replicated content
* How to choose among known replicas
» How to direct clients towards replica

15-441 Fall 2011 Caching/CDN/Hashing 17

Server Selection i‘,

* Which server?
» Lowest load = to balance load on servers

» Best performance - to improve client performance
« Based on Geography? RTT? Throughput? Load?

» Any alive node > to provide fault tolerance
» How to direct clients to a particular server?

+ As part of routing > anycast, cluster load balancing
* Not covered ®

 As part of application > HTTP redirect
* As part of naming > DNS

15-441 Fall 2011 Caching/CDN/Hashing 18

Application Based i‘.

* HTTP supports simple way to indicate that Web page has moved
(30X responses)

» Server receives Get request from client
« Decides which server is best suited for particular client and object
* Returns HTTP redirect to that server

» Can make informed application specific decision

* May introduce additional overhead ->
multiple connection setup, name lookups, etc.

* While good solution in general, but...

« HTTP Redirect has some design flaws — especially with current
browsers

15-441 Fall 2011 Caching/CDN/Hashing 19

Naming Based i‘.

» Client does name lookup for service

» Name server chooses appropriate server address
» A-record returned is “best” one for the client

* What information can name server base decision on?
» Server load/location - must be collected

* Information in the name lookup request
« Name service client - typically the local name server for client

15-441 Fall 2011 Caching/CDN/Hashing 20

How Akamai Works i‘,

+ Clients fetch html document from primary server
» E.g. fetch index.html from cnn.com
* URLs for replicated content are replaced in html

» E.g. replaced with

» Client is forced to resolve aXYZ.g.akamaitech.net
hostname
Note: Nice presentation on Akamai at

www.cs.odu.edu/~mukka/cs775s07/Presentations/mklein.pdf

15-441 Fall 2011 Caching/CDN/Hashing 21

How Akamai Works i‘,

* How is content replicated?
» Akamai only replicates static content (*)
* Modified name contains original file name
» Akamai server is asked for content
* First checks local cache

* If not in cache, requests file from primary server and
caches file

* (At least, the version we're talking about today. Akamai actually lets sites write
code that can run on Akamai'’s servers, but that’s a pretty different beast)

15-441 Fall 2011 Caching/CDN/Hashing 22

How Akamai Works i‘,

* Root server gives NS record for akamai.net

» Akamai.net name server returns NS record for
g.akamaitech.net

» Name server chosen to be in region of client’'s name
server

« TTL is large
» G.akamaitech.net nameserver chooses server in region

» Should try to chose server that has file in cache - How
to choose?

* Uses aXYZ name and hash
e TTL is small > why?

15-441 Fall 2011 Caching/CDN/Hashing 23

How Akamai Works i‘,

cnn.com (content provider) DNS root server Akamai server

. Akamai high-level
! DNS server

Akamai low-level DNS
i server

Nearby matching
Akamai server

— > 2
X —>
End-user 10] -
Get /cnn.com/foo.jpg i it
15-441 Fall 2011 Caching/CDN/Hashing 24

Akamai — Subsequent Requests i‘,

cnn.com (content provider) DNS root server Akamai server
.|l! .“! “!

Get . - b 3

index. Assuming timeout

on NS record
htrad 1112 . Akamai high-level
! DNS server

Akamai low-level DNS

.Il server
u Nearby matching
Akamai server
== 9 l

End-user Get 10
/enn.com/foo.jpg

15-441 Fall 2011 Caching/CDN/Hashing 25

Simple Hashing k‘.

» Given document XYZ, we need to choose a server to use
* Suppose we use modulo
* Number servers from 1...n

» Place document XYZ on server (XYZ mod n)

* What happens when a servers fails? n > n-1
» Same if different people have different measures of n

* Why might this be bad?

15-441 Fall 2011 Caching/CDN/Hashing 26

Consistent Hash i‘,

» ‘“view” = subset of all hash buckets that are visible
» Desired features

* Smoothness - little impact on hash bucket contents
when buckets are added/removed

» Spread — small set of hash buckets that may hold an
object regardless of views

» Load — across all views # of objects assigned to hash
bucket is small

15-441 Fall 2011 Caching/CDN/Hashing 27

Consistent Hash — Example i‘,

e Construction

 Assign each of C hash buckets to 14
random points on mod 2" circle,
where, hash key size = n.

* Map object to random position on
unit interval

» Hash of object = closest bucket

12 4

* Monotone = addition of bucket does not cause
movement between existing buckets

* Spread & Load - small set of buckets that lie
near object

» Balance - no bucket is responsible for large
number of objects

15-441 Fall 2011 Caching/CDN/Hashing 28

Consistent Hashing i‘.

* Main idea:
* map both and nodes to the same (metric) identifier space
« find a “rule” how to assign keys to nodes

Ring is one option.

15-441 Fall 2011 Caching/CDN/Hashing 29

Consistent Hashing i‘.

» The consistent hash function assigns each node and key
an m-bit identifier using SHA-1 as a base hash function

* Node identifier: SHA-1 hash of IP address

* Key identifier: SHA-1 hash of key

15-441 Fall 2011 Caching/CDN/Hashing 30

Identifiers i‘.

« m bit identifier space for both keys and nodes

* Key identifier: SHA-1(key)

SHA-1

Key="LetltBe” ID=60

* Node identifier: SHA-1(IP address)
1P=198.10.10.17 —SHAL | 1p-23

*How to map key IDs to node IDs?

15-441 Fall 2011 Caching/CDN/Hashing 31

Consistent Hashing Example i‘,

Rule: A key is stored at its successor: node with next higher or equal ID

1P=+198.10.10.1” 0 K5
N123 K20

Circular 7-bit
ID space

v

Z60 — Key="“LetltBe”
_/

15-441 Fall 2011 Caching/CDN/Hashing 32

Consistent Hashing Properties i‘,

Consistent Hash — Example “,

* Load balance: all nodes receive roughly the same
number of keys

» For N nodes and K keys, with high probability

+ each node holds at most (1+¢)K/N keys
* (provided that K is large enough compared to N)

15-441 Fall 2011 Caching/CDN/Hashing 33

¢ Construction

+ Assign each of C hash buckets to 14
random points on mod 2" circle,
where, hash key size = n.

* Map object to random position on
unit interval

» Hash of object = closest bucket

Monotone = addition of bucket does not cause
movement between existing buckets

Spread & Load - small set of buckets that lie
near object

Balance - no bucket is responsible for large
number of objects

15-441 Fall 2011 Caching/CDN/Hashing 34

Load Balance i‘.

Consistent Hashing not just for CDN i‘,

» Redirector knows all CDN server Ids
» Can track approximate load (or delay)
» To balance load:
* W, =Hash(URL, ip of s;) for all i
» Sort W; from high to low
« find first server with low enough load
» Benefits?

* How should “load” be measured?

15-441 Fall 2011 Caching/CDN/Hashing 35

Finding a nearby server for an object in a CDN uses
centralized knowledge.

Consistent hashing can also be used in a distributed
setting

P2P systems like BitTorrent, e.g., project 3, need a way of
finding files.

Consistent Hashing to the rescue.

15-441 Fall 2011 Caching/CDN/Hashing 36

Chord: Design Goals i‘,

» Load balance: Chord acts as a distributed hash
function, spreading keys evenly over the nodes.

» Decentralization: Chord is fully distributed: no node is
more important than any other.

» Scalability: The cost of a Chord lookup grows as the
log of the number of nodes, so even very large
systems are feasible.

+ Availability: Chord automatically adjusts its internal
tables to reflect newly joined nodes as well as node
failures, ensuring that the node responsible for a key
can always be found.

15-441 Fall 2011 Caching/CDN/Hashing 37

Lookups strategies

"N

» Every node knows its successor in the ring
* Requires O(N) lookups
0

“N90 has K60"

K60 [N9O | _/

15-441 Fall 2011 Caching/CDN/Hashing 38

N10 Where is “LetltBe”?

Hash("LetItBe"”) = K60

A
N32

/

Reducing Lookups: Finger Tables i‘,

« Each node knows m other nodes in the ring (it has m fingers)
* Increase distance exponentially
« Fingeri points to successor of n+2i-1 i=1..m

15-441 Fall 2011 Caching/CDN/Hashing 39

Faster Lookups

» Lookups are O(log N) hops

N32 finger table

FO points to successor(32+2%) = 60
F1 points to successor(32+21) = 60
F2 points to successor(32+22) = 60
F3 points to successor(32+2%) = 60

F4 points to successor(32+24) = 60
N20 | K19 i 5) =
F5 points to successor(32+2°) = 80

F6 points to successor(32+26) = 99

N99
N32
Look for a node
Lookup(K13) identifier in the finger
N8O table that is less then the
key identifier and closest
in the ID space to the
N60 . .
key identifier
15-441 Fall 2011 Caching/CDN/Hashing 40

Summary of Performance Results i‘,

 Efficient: O(log N) messages per lookup
» Scalable: O(log N) state per node

* Robust: survives massive membership changes

15-441 Fall 2011 Caching/CDN/Hashing 41

Joining the Ring k‘.

» Three step process
« Initialize all fingers of new node
» Update fingers of existing nodes
» Transfer keys from successor to new node

« Two invariants to maintain
» Each node’s finger table is correctly maintained

» successor(k) is responsible for k (objects stored in
correct place)

15-441 Fall 2011 Caching/CDN/Hashing 42

Join: Initialize New Node’s N
Finger Table

» Locate any node p in the ring
» Ask node p to lookup fingers of new node

1. Lookup(37,38,40,...,100,164)

N60

15-441 Fall 2011 Caching/CDN/Hashing 43

Join: Update Fingers of
Existing Nodes i"

* New node calls update function on existing nodes

n becomes the ith
fingerprint of node p if p
precedes n by at least 2i'!
and ith finger of node p
succeeds n.

15-441 Fall 2011 Caching/CDN/Hashing 44

Join: Transfer Keys “

» Only keys in the range are transferred

Copy keys 21..36

N40 38 from N40 to N36
K38

15-441 Fall 2011 Caching/CDN/Hashing 45

Handling Failures “,

* Problem: Failures could cause incorrect lookup

» Solution: Fallback: keep track of a list of immediate
successors

Lookup(85)

15-441 Fall 2011 Caching/CDN/Hashing 46

Handling Failures “,

» Use successor list
» Each node knows r immediate successors
« After failure, will know first live successor
» Correct successors guarantee correct lookups

» Guarantee with some probability

» Can choose r to make probability of lookup failure
arbitrarily small

15-441 Fall 2011 Caching/CDN/Hashing 47

Joining/Leaving overhead “,

* When a node joins (or leaves) the network, only a fraction
of the keys are moved to a different location.

» For N nodes and K keys, with high probability

« when node N+1 joins or leaves, O(K/N) keys change
hands, and only to/from node N+1

15-441 Fall 2011 Caching/CDN/Hashing 48

Summary i‘.

Caching improves web performance
Caching only at client is only partial solution

Content Delivery Networks move data closer to user,
maintain consistency, balance load

Consistent Caching maps keys AND buckets into the
same space

Consistent caching can be fully distributed, useful in P2P
systems using structured overlays

15-441 Fall 2011 Caching/CDN/Hashing 49

