
1

15-441 Computer Networking

Lecture 19 – TCP Performance

2

Outline

•  TCP congestion avoidance

•  TCP slow start

•  TCP modeling

3

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

•  Both X1 and X2
increase/ decrease by
the same amount
over time
•  Additive increase

improves fairness and
additive decrease
reduces fairness

4

Muliplicative Increase/Decrease

•  Both X1 and X2
increase by the
same factor over
time
•  Extension from

origin – constant
fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

2

5

What is the Right Choice?

•  Constraints limit
us to AIMD
•  Improves or

keeps fairness
constant at
each step

•  AIMD moves
towards optimal
point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

6

TCP Congestion Control

•  Changes to TCP motivated by ARPANET
congestion collapse

•  Basic principles
•  AIMD
•  Packet conservation
•  Reaching steady state quickly
•  ACK clocking

7

Implementation Issue

•  Operating system timers are very coarse – how to pace
packets out smoothly?

•  Implemented using a congestion window that limits how
much data can be in the network.
•  TCP also keeps track of how much data is in transit

•  Data can only be sent when the amount of outstanding
data is less than the congestion window.
•  The amount of outstanding data is increased on a “send” and

decreased on “ack”
•  (last sent – last acked) < congestion window

•  Window limited by both congestion and buffering
•  Sender’s maximum window = Min (advertised window, cwnd)

8

ACK Clocking

•  Congestion window helps to “pace” the transmission of
data packets

•  In steady state, a packet is sent when an ack is received
•  Data transmission remains smooth, once it is smooth
•  Self-clocking behavior

Pr
Pb

Ar Ab

Receiver Sender

As

3

9

AIMD

•  Distributed, fair and efficient
•  Packet loss is seen as sign of congestion and results in a

multiplicative rate decrease
•  Factor of 2

•  TCP periodically probes for available bandwidth by
increasing its rate

Time

Rate

10

Congestion Avoidance

•  If loss occurs when cwnd = W
•  Network can handle 0.5W ~ W segments
•  Set cwnd to 0.5W (multiplicative decrease)

•  Upon receiving ACK
•  Increase cwnd by (1 packet)/cwnd

•  What is 1 packet? à 1 MSS worth of bytes
•  After cwnd packets have passed by à approximately increase

of 1 MSS

•  Implements AIMD

11

Congestion Avoidance Sequence Plot

Time

Sequence No

Packets

Acks

12

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

4

13

Packet Conservation

•  At equilibrium, inject packet into network only
when one is removed
•  Sliding window and not rate controlled
•  But still need to avoid sending burst of packets à would

overflow links
•  Need to carefully pace out packets
•  Helps provide stability

•  Need to eliminate spurious retransmissions
•  Accurate RTO estimation
•  Better loss recovery techniques (e.g. fast retransmit)

17

Outline

•  TCP congestion avoidance

•  TCP slow start

•  TCP modeling

18

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

19

Reaching Steady State

•  Doing AIMD is fine in steady state but slow…
•  How does TCP know what is a good initial rate to

start with?
•  Should work both for a CDPD (10s of Kbps or less) and

for supercomputer links (10 Gbps and growing)
•  Quick initial phase to help get up to speed (slow

start)

5

20

Slow Start Packet Pacing

•  How do we get this
clocking behavior to start?
•  Initialize cwnd = 1
•  Upon receipt of every ack,

cwnd = cwnd + 1
•  Implications

•  Window actually increases to
W in RTT * log2(W)

•  Can overshoot window and
cause packet loss

21

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

22

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

23

Return to Slow Start

•  If packet is lost we lose our self clocking as well
•  Need to implement slow-start and congestion

avoidance together
•  When retransmission occurs set ssthresh to 0.5w

•  If cwnd < ssthresh, use slow start
•  Else use congestion avoidance

6

24

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

25

Outline

•  TCP congestion avoidance

•  TCP slow start

•  TCP modeling

26

TCP Performance

•  Can TCP saturate a link?
•  Congestion control

•  Increase utilization until… link becomes congested
•  React by decreasing window by 50%
•  Window is proportional to rate * RTT

•  Doesn’t this mean that the network oscillates
between 50 and 100% utilization?
•  Average utilization = 75%??
•  No…this is *not* right!

27

TCP Congestion Control

Only W packets
may be outstanding

Rule for adjusting W
•  If an ACK is received: W ← W+1/W
•  If a packet is lost: W ← W/2

Source Dest

maxW

2
maxW

t

Window size

7

28

Single TCP Flow
Router without buffers

29

Summary Unbuffered Link

t

W Minimum window
for full utilization

•  The router can’t fully utilize the link
•  If the window is too small, link is not full
•  If the link is full, next window increase causes drop
•  With no buffer it still achieves 75% utilization

30

TCP Performance

•  In the real world, router queues play important role
•  Window is proportional to rate * RTT

•  But, RTT changes as well the window
•  Window to fill links = propagation RTT * bottleneck

bandwidth
•  If window is larger, packets sit in queue on bottleneck link

31

TCP Performance

•  If we have a large router queue à can get 100%
utilization
•  But, router queues can cause large delays

•  How big does the queue need to be?
•  Windows vary from W à W/2

•  Must make sure that link is always full
•  W/2 > RTT * BW
•  W = RTT * BW + Qsize
•  Therefore, Qsize > RTT * BW

•  Ensures 100% utilization
•  Delay?

•  Varies between RTT and 2 * RTT

8

32

Single TCP Flow
Router with large enough buffers for full link utilization

33

Summary Buffered Link

t

W

Minimum window
for full utilization

•  With sufficient buffering we achieve full link utilization
•  The window is always above the critical threshold
•  Buffer absorbs changes in window size

•  Buffer Size = Height of TCP Sawtooth
•  Minimum buffer size needed is 2T*C

•  This is the origin of the rule-of-thumb

Buffer

34

TCP (Summary)

•  General loss recovery
•  Stop and wait
•  Selective repeat

•  TCP sliding window flow control
•  TCP state machine
•  TCP loss recovery

•  Timeout-based
•  RTT estimation

•  Fast retransmit
•  Selective acknowledgements

35

TCP (Summary)

•  Congestion collapse
•  Definition & causes

•  Congestion control
•  Why AIMD?
•  Slow start & congestion avoidance modes
•  ACK clocking
•  Packet conservation

•  TCP performance modeling
•  How does TCP fully utilize a link?

•  Role of router buffers

