





































# **Reliability Challenges**



- · Congestion related losses
- · Variable packet delays
  - · What should the timeout be?
- · Reordering of packets
  - How to tell the difference between a delayed packet and a lost one?

21

#### TCP = Go-Back-N Variant



- · Sliding window with cumulative acks
- Receiver can only return a single "ack" sequence number to the sender
  - · Acknowledges all bytes with a lower sequence number
- · Starting point for retransmission
- · Duplicate acks sent when out-of-order packet received
- · But: sender only retransmits a single packet.
  - · Reason???
    - · Only one that it knows is lost
    - Network is congested → shouldn't overload it
- Error control is based on byte sequences, not packets.
  - Retransmitted packet can be different from the original lost packet – Why?

2:

#### Round-trip Time Estimation



- · Wait at least one RTT before retransmitting
- Importance of accurate RTT estimators:
  - · Low RTT estimate
    - · unneeded retransmissions
  - · High RTT estimate
    - · poor throughput
- · RTT estimator must adapt to change in RTT
  - · But not too fast, or too slow!
- Spurious timeouts
  - "Conservation of packets" principle never more than a window worth of packets in flight

2

# Original TCP Round-trip Estimator



- Round trip times exponentially averaged:
  - New RTT =  $\alpha$  (old RTT) + (1 -  $\alpha$ ) (new sample)
  - Recommended value for  $\alpha$ : 0.8 0.9
    - 0.875 for most TCP's



- Retransmit timer set to (b \* RTT), where b = 2
  - · Every time timer expires, RTO exponentially backed-off
- · Not good at preventing spurious timeouts
  - · Why?

#### RTT Sample Ambiguity







- · Karn's RTT Estimator
  - If a segment has been retransmitted:
    - Don't count RTT sample on ACKs for this segment
    - · Keep backed off time-out for next packet
    - · Reuse RTT estimate only after one successful transmission

25

#### Jacobson's Retransmission Timeout



- · Key observation:
  - · At high loads, round trip variance is high
- Solution:
  - Base RTO on RTT and standard deviation
    - RTO = RTT + 4 \* rttvar
  - new\_rttvar =  $\beta$  \* dev + (1- $\beta$ ) old\_rttvar
    - Dev = linear deviation
    - Inappropriately named actually smoothed linear deviation

26

#### **Timestamp Extension**



- Used to improve timeout mechanism by more accurate measurement of RTT
- When sending a packet, insert current time into option
  - 4 bytes for time, 4 bytes for echo a received timestamp
- Receiver echoes timestamp in ACK
  - · Actually will echo whatever is in timestamp
- Removes retransmission ambiguity
  - Can get RTT sample on any packet

7

# **Timer Granularity**



- Many TCP implementations set RTO in multiples of 200,500,1000ms
- · Why?
  - Avoid spurious timeouts RTTs can vary quickly due to cross traffic
  - Make timers interrupts efficient
- What happens for the first couple of packets?
  - Pick a very conservative value (seconds)

















# Muliplicative Increase/Decrease • Both X<sub>1</sub> and X<sub>2</sub> increase by the same factor over time • Extension from origin – constant fairness • User 2's Allocation X<sub>2</sub> User 1's Allocation X<sub>1</sub>







#### Implementation Issue



- Operating system timers are very coarse how to pace packets out smoothly?
- Implemented using a congestion window that limits how much data can be in the network.
  - · TCP also keeps track of how much data is in transit
- Data can only be sent when the amount of outstanding data is less than the congestion window.
  - The amount of outstanding data is increased on a "send" and decreased on "ack"
  - (last sent last acked) < congestion window
- Window limited by both congestion and buffering
  - Sender's maximum window = Min (advertised window, cwnd)

41

#### **Packet Conservation**



- At equilibrium, inject packet into network only when one is removed
  - Sliding window and not rate controlled
  - But still need to avoid sending burst of packets → would overflow links
    - · Need to carefully pace out packets
    - · Helps provide stability
- Need to eliminate spurious retransmissions
  - Accurate RTO estimation
  - Better loss recovery techniques (e.g. fast retransmit)

11-01-07

Lecture 19: TCP Congestion Control

42

#### TCP Packet Pacing



- Congestion window helps to "pace" the transmission of data packets
- · In steady state, a packet is sent when an ack is received
  - · Data transmission remains smooth, once it is smooth
  - · Self-clocking behavior



#### Congestion Avoidance



- If loss occurs when cwnd = W
  - Network can handle 0.5W ~ W segments
  - Set cwnd to 0.5W (multiplicative decrease)
- Upon receiving ACK
  - Increase cwnd by (1 packet)/cwnd
    - What is 1 packet? → 1 MSS worth of bytes
    - After cwnd packets have passed by → approximately increase of 1 MSS
- Implements AIMD





# Important Lessons



- Transport service
  - UDP → mostly just IP service
  - TCP  $\rightarrow$  congestion controlled, reliable, byte stream
- Types of ARQ protocols
  - Stop-and-wait → slow, simple
  - Go-back-n → can keep link utilized (except w/ losses)
  - Selective repeat → efficient loss recovery
- Sliding window flow control
- TCP flow control
  - Sliding window → mapping to packet headers
  - 32bit sequence numbers (bytes)

47

# Important Lessons



- TCP state diagram → setup/teardown
- TCP timeout calculation  $\rightarrow$  how is RTT estimated
- Modern TCP loss recovery
  - Why are timeouts bad?
  - How to avoid them?  $\rightarrow$  e.g. fast retransmit