
06-datalink.ppt, 15-441, Fall 2011 1

15-441 © CMU 2011

15-441 Computer Networking

Lecture 6 - Coding and Error Control

15-441 © CMU 2011 2

From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream 0 0 1 0 1 1 1 0 0 0 1

Packets 0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission

2

15-441 © CMU 2011 3

Network Delay

• Follow up on requirements from last week:
"A new transatlantic cable (the first in 10 years) is going to be
laid at the cost of $300M. The reason? To shave 6ms off the
time to transmit packets from London to New York. The
Hibernian Express will reduce the current transmission time —
roughly 65 milliseconds — by less than ten percent. However,
investors believe the financial community will be lining up to pay
premium rates to use the new cable. The article suggests that a
one-millisecond advantage could be worth $100M per year to a
large hedge fund."

— http://slashdot.org, September 13, 2011 @05:11AM

15-441 © CMU 2011 4

Link Layer: Implementation

• Implemented in “adapter”
• E.g., PCMCIA card, Ethernet card
• Typically includes: RAM, DSP chips, host bus interface, and link

interface

application
transport
network

link
physical

network
link

physical

M
M
M
M

Ht

HtHn

HtHnHl MHtHnHl

framephys. link

data link
protocol

adapter card

4

06-datalink.ppt, 15-441, Fall 2011 2

15-441 © CMU 2011 5

Datalink Functions

• Framing: encapsulating a network layer datagram into
a bit stream.
• Add header, mark and detect frame boundaries

• Media access: controlling which frame should be sent
over the link next.

• Error control: error detection and correction to deal
with bit errors.
• May also include other reliability support, e.g. retransmission

• Flow control: avoid that the sender outruns the
receiver

• Hubbing, bridging: extend the size of the network

5 15-441 © CMU 2011 6

Outline

• Encoding
• Digital signal to bits

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

6

15-441 © CMU 2011 7

How Encode?

• Seems obvious, why take time with this?

V 0

.85

-.85

0 0 0 11 0 1 0 1

7 15-441 © CMU 2011 8

Why Encode?

0 1 0 1 How many more ones?

8

06-datalink.ppt, 15-441, Fall 2011 3

15-441 © CMU 2011 9

Why Do We Need Encoding?

• Keep receiver synchronized with sender.
• Create control symbols, in addition to regular data

symbols.
• E.g. start or end of frame, escape, ...

• Error detection or error corrections.
• Some codes are illegal so receiver can detect certain

classes of errors
• Minor errors can be corrected by having multiple adjacent

signals mapped to the same data symbol
• Encoding can be done one bit at a time or in multi-bit

blocks, e.g., 4 or 8 bits.
• Encoding can be very complex, e.g. wireless.

9 15-441 © CMU 2011 10

Non-Return to Zero (NRZ)

• 1  high signal; 0  low signal
• Used by Synchronous Optical Network (SONET)
• Long sequences of 1’s or 0’s can cause problems:

• Sensitive to clock skew, i.e. hard to recover clock
• DC bias hard to detect – low and high detected by difference

from average voltage

V 0

.85

-.85

0 0 0 11 0 1 0 1

10

15-441 © CMU 2011 11

Clock Recovery

• When to sample voltage?
• Synchronized sender and

receiver clocks
• Need easily detectible

event at both ends
• Signal transitions help

resync sender and receiver
• Need frequent transitions to

prevent clock skew
• SONET XOR’s bit sequence

to ensure frequent
transitions

11

http://yellowfourier.com/eyedia.html

15-441 © CMU 2011 12

Non-Return to Zero Inverted
(NRZI)

• 1  make transition; 0  signal stays the same
• Solves the problem for long sequences of 1’s, but

not for 0’s.

V 0

.85

-.85

0 0 0 11 0 1 0 1

12

06-datalink.ppt, 15-441, Fall 2011 4

15-441 © CMU 2011 13

Manchester Encoding

• Used by Ethernet
• 0=low to high transition, 1=high to low transition
• Transition for every bit simplifies clock recovery
• DC balance has good electrical properties
• Not very efficient

• Doubles the number of transitions
• Circuitry must run twice as fast

V 0

.85

-.85

0 1 1 0

.1µs

13 15-441 © CMU 2011 14

4B/5B Encoding

• Data coded as symbols of 5 line bits  4 data
bits, so 100 Mbps uses 125 MHz.
• Uses less frequency space than Manchester encoding

• Encoding ensures no more than 3 consecutive 0’s
• Uses NRZI to encode resulting sequence
• 16 data symbols, 8 control symbols

• Data symbols: 4 data bits
• Control symbols: idle, begin frame, etc.

• Example: FDDI.

14

15-441 © CMU 2011 15

4B/5B Encoding

0000
0001
0010
0011
0100
0101
0110
0111

11110
01001
10100
10101
01010
01011
01110
01111

Data Code

1000
1001
1010
1011
1100
1101
1110
1111

10010
10011
10110
10111
11010
11011
11100
11101

Data Code

15 15-441 © CMU 2011 16

Other Encodings

• 8B/10B: Fiber Channel and Gigabit Ethernet
• 64B/66B: 10 Gbit Ethernet
• B8ZS: T1 signaling (bit stuffing)

• Encoding necessary for clocking
• Lots of approaches
• Rule of thumb:

• Little bandwidth  complex encoding
• Lots of bandwidth  simple encoding

Things to Remember

16

06-datalink.ppt, 15-441, Fall 2011 5

15-441 © CMU 2011 17

From Signals to Packets

Analog Signal

“Digital” Signal

Bit Stream 0 0 1 0 1 1 1 0 0 0 1

Packets 0100010101011100101010101011101110000001111010101110101010101101011010111001

Header/Body Header/Body Header/Body

ReceiverSender
Packet

Transmission

17 15-441 © CMU 2011 18

Outline

• Encoding
• Digital signal to bits

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

18

15-441 © CMU 2011 19

Framing

• How do we differentiate the stream of bits into
frames?

01000101010111001010101010111011100000011110101011101010101011010110101

19 15-441 © CMU 2011 20

Framing

• A link layer function, defining which bits have
which function.

• Minimal functionality: mark the beginning and end
of packets (or frames).

• Some techniques:
• out of band delimiters (e.g. FDDI 4B/5B control

symbols)
• frame delimiter characters with character stuffing
• frame delimiter codes with bit stuffing
• synchronous transmission (e.g. SONET)

20

06-datalink.ppt, 15-441, Fall 2011 6

15-441 © CMU 2011 21

Out-of-band: E.g., 802.5

• 802.5/token ring uses 4b/5b
• Start delim & end delim are “illegal” codes

Start
delim

Access
ctrl

Body checksum
Frame

ctrl
Dest
adr

Src
adr

End
delim

Frame
status

21 15-441 © CMU 2011 22

Delimiter Based

• SYN: sync character
• SOH: start of header
• STX: start of text
• ETX: end of text

• What happens when ETX is in Body?

SYN SYN SOH Header STX Body ETX CRC

22

15-441 © CMU 2011 23

Character and Bit Stuffing

• Mark frames with special character.
• What happens when the user sends this character?
• Use escape character when controls appear in data:
• *abc*def *abc*def
• Very common on serial lines, in editors, etc.

• Mark frames with special bit sequence
• must ensure data containing this sequence can be transmitted
• example: suppose 11111111 is a special sequence.
• transmitter inserts a 0 when this appears in the data:
• 11111111  111111101
• must stuff a zero any time seven 1s appear:
• 11111110  111111100
• receiver unstuffs.

23 15-441 © CMU 2011 24

preamble datagram length more stuff

24

Ethernet Framing

• Preamble is 7 bytes of 10101010 (5 MHz square
wave) followed by one byte of 10101011
• With Manchester code, 10101 becomes 10 01 10 01 10,

which looks like 1 00 11 00 11 0, which looks like 5 MHz
square wave

• Allows receivers to recognize start of transmission
after idle channel

06-datalink.ppt, 15-441, Fall 2011 7

15-441 © CMU 2011 25

Clock-Based Framing

• Used by SONET
• Fixed size frames (810 bytes)
• Look for start of frame marker that appears every

810 bytes
• Will eventually sync up

25 15-441 © CMU 2011 26

How avoid clock skew?

• Special bit sequences sent in first two chars of
frame
• But no bit stuffing. Hmmm?

• Lots of transitions by xoring with special pattern
(and hope for the best)

26

15-441 © CMU 2011 27

Outline

• Encoding
• Digital signal to bits

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

27 15-441 © CMU 2011 28

Error Coding

• Transmission process may introduce errors into a
message.
• Single bit errors versus burst errors

• Detection:
• Requires a convention that some messages are invalid
• Hence requires extra bits
• An (n,k) code has codewords of n bits with k data bits and r

= (n-k) redundant check bits
• Correction

• Forward error correction: many related code words map to
the same data word

• Detect errors and retry transmission

28

06-datalink.ppt, 15-441, Fall 2011 8

15-441 © CMU 2011 29

Error Detection
• EDC= Error Detection and Correction bits (redundancy)
• D = Data protected by error checking, may include header fields
• Error detection not 100% reliable!

• Protocol may miss some errors, but rarely
• Larger EDC field yields better detection and correction

29 15-441 © CMU 2011 30

Parity Checking

Single Bit Parity:
Detect single bit errors

30

15-441 © CMU 2011 3131

Internet Checksum

Sender
• Treat segment contents

as sequence of 16-bit
integers

• Checksum: addition (1’s
complement sum) of
segment contents

• Sender puts checksum
value into checksum field
in header

Receiver
• Compute checksum of

received segment
• Check if computed

checksum equals checksum
field value:
• NO - error detected
• YES - no error detected.

But maybe errors
nonetheless?

• Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

15-441 © CMU 2011 32

Basic Concept:
Hamming Distance
• Hamming distance of two bit

strings = number of bit
positions in which they differ.

• If the valid words of a code
have minimum Hamming
distance D, then D-1 bit
errors can be detected.

• If the valid words of a code
have minimum Hamming
distance D, then [(D-1)/2] bit
errors can be corrected.

1 0 1 1 0
1 1 0 1 0

HD=2

HD=3

32

06-datalink.ppt, 15-441, Fall 2011 9

15-441 © CMU 2011 33

Example 1: Parity

• What is the minimum Hamming distance between to
valid code words using a single parity bit?

• How many bit errors can always be detected with
parity?

• If there are more bit errors, how often will they be
detected?

• What is [(D-1)/2] for parity?
• How many bit errors can be corrected with parity?

33 15-441 © CMU 2011 34

Examples

• A (4,3) parity code has D=2:
• 0001 0010 0100 0111 1000 1011 1101 1110
• (last bit is binary sum of previous 3, inverted - “odd parity”)

• A (7,4) code with D=3 (2ED, 1EC):
• 0000000 0001101 0010111 0011010
• 0100011 0101110 0110100 0111001
• 1000110 1001011 1010001 1011100
• 1100101 1101000 1110010 1111111

• 1001111 corrects to 1001011
• Note the inherent risk in correction; consider a 2-bit

error resulting in 1001011  1111011.
• There are formulas to calculate the number of extra

bits that are needed for a certain D.

34

15-441 © CMU 2011 35

Cyclic Redundancy Codes
(CRC)
• Commonly used codes that have good error

detection properties.
• Can catch many error combinations with a small

number of redundant bits
• Based on division of polynomials.

• Errors can be viewed as adding terms to the polynomial
• Should be unlikely that the division will still work

• Can be implemented very efficiently in hardware.
• Examples:

• CRC-32: Ethernet
• CRC-8, CRC-10, CRC-32: ATM

35 15-441 © CMU 2011 36

CRC: Basic idea

• Treat bit strings as polynomials:
1 0 1 1 1
X4+ X2+X1+X0

• Sender and Receiver agree on a divisor polynomial
of degree k

• Message of M bits  send M+k bits
• No errors if M+k is divisible by divisor polynomial
• If you pick the right divisor you can:

• Detect all 1 & 2-bit errors
• Any odd number of errors
• All Burst errors of less than k bits
• Some burst errors >= k bits

36

06-datalink.ppt, 15-441, Fall 2011 10

15-441 © CMU 2011 37

Outline

• Encoding
• Digital signal to bits

• Framing
• Bit stream to packets

• Packet loss & corruption
• Error detection
• Flow control
• Loss recovery

37 15-441 © CMU 2011 38

Link Flow Control and
Error Recovery
• Dealing with receiver overflow: flow control.
• Dealing with packet loss and corruption: error control.
• Meta-comment: these issues are relevant at many

layers.
• Link layer: sender and receiver attached to the same “wire”
• End-to-end: transmission control protocol (TCP) - sender

and receiver are the end points of a connection
• How can we implement flow control?

• “You may send” (windows, stop-and-wait, etc.)
• “Please shut up” (source quench, 802.3x pause frames, etc.)
• Where are each of these appropriate?

38

15-441 © CMU 2011 39

A Naïve Protocol

• Sender simply sends to the receiver whenever it
has packets.

• Potential problem: sender can outrun the receiver.
• Receiver too slow, buffer overflow, ..

• Not always a problem: receiver might be fast
enough.

Sender Receiver

39 15-441 © CMU 2011 40

Adding Flow Control

• Stop and wait flow control: sender waits to send
the next packet until the previous packet has been
acknowledged by the receiver.
• Receiver can pace the receiver

Sender Receiver

40

06-datalink.ppt, 15-441, Fall 2011 11

15-441 © CMU 2011 41

Drawback: Performance

Sender

Receiver
Time

Max Throughput = 1 pkt
Roundtrip Time

RTT

41 15-441 © CMU 2011 42

Window Flow Control

• Stop and wait flow control results in poor throughput
for long-delay paths: packet size/ roundtrip-time.

• Solution: receiver provides sender with a window that
it can fill with packets.
• The window is backed up by buffer space on receiver
• Receiver acknowledges the a packet every time a packet is

consumed and a buffer is freed

Sender Receiver

42

15-441 © CMU 2011 43

Bandwidth-Delay Product

Sender

Receiver
Time

Max Throughput = Window Size
Roundtrip Time

RTT

43 15-441 © CMU 2011 44

Error Recovery

• Two forms of error recovery
• Error Correcting Codes (ECC)
• Automatic Repeat Request (ARQ)

• ECC
• Send extra redundant data to help repair losses

• ARQ
• Receiver sends acknowledgement (ACK) when it

receives packet
• Sender uses ACKs to identify and resend data that was

lost

• Which should we use? Why? When?

44

06-datalink.ppt, 15-441, Fall 2011 12

15-441 © CMU 2011 45

Error Recovery Example:
Error Correcting Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0

45 15-441 © CMU 2011 4646

Stop and Wait

Time

Packet

ACKTi
m

eo
ut

• Simplest ARQ
protocol

• Send a packet,
stop and wait until
acknowledgement
arrives

• Will examine ARQ
issues later in
semester

Sender Receiver

15-441 © CMU 2011 4747

Recovering from Error

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Time

Packet

ACK

Ti
m

eo
ut

Packet lost

Packet

ACK

Ti
m

eo
ut

Early timeout

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

ACK lost

15-441 © CMU 2011 48

How to Recognize
Retransmissions?

• Use sequence numbers
• both packets and acks

• Sequence # in packet is
finite  How big should it
be?
• For stop and wait?

• One bit – won’t send seq #1
until received ACK for seq
#0

Pkt 0

ACK 0

Pkt 0

ACK 1

Pkt 1ACK 0

48

06-datalink.ppt, 15-441, Fall 2011 13

15-441 © CMU 2011 49

Issues with Window-based
Protocol

• Receiver window size: # of out-of-sequence
packets that the receiver can receive

• Sender window size: # of total outstanding
packets that sender can send without
acknowledged

• How to deal with sequence number wrap around?

49 15-441 © CMU 2011 50

What is Used in Practice?

• No flow or error control.
• E.g. regular Ethernet, just uses CRC for error detection

• Flow control only.
• E.g. Gigabit Ethernet

• Flow and error control.
• E.g. X.25 (older connection-based service at 64 Kbs

that guarantees reliable in order delivery of data)

50

15-441 © CMU 2011 51

So far …

•… But what if we want more nodes?

Wires for everybody!

Can connect two nodes

51 15-441 © CMU 2011 52

Better Solutions:
Datalink Architectures

• Point-Point with switches • Media access control.

52

06-datalink.ppt, 15-441, Fall 2011 14

15-441 © CMU 2011 53

Outline

• Encoding
• Digital signal to bits, e.g. NRZ, Manchester
• Clock recovery/synchronization

• Framing
• Bit stream to packets, e.g. character stuffing, bit stuffing,

synchronous

• Packet loss & corruption
• Error detection, e.g. CRC, checksum, parity, Hamming Distance
• Flow control, concept of windows
• Loss recovery, e.g. error correction, ARQ

53 15-441 © CMU 2011 54

EXTRA SLIDES

54

15-441 © CMU 2011 55

Clock Based Framing: SONET

• SONET is the Synchronous Optical Network
standard for data transport over optical fiber.

• One of the design goals was to be backwards
compatible with many older telco standards.

• Beside minimal framing functionality, it provides
many other functions:
• operation, administration and maintenance (OAM) communications
• synchronization
• multiplexing of lower rate signals
• multiplexing for higher rates

• In other words, really complicated!

55 15-441 © CMU 2011 56

Standardization History

• Process was started by divestiture in 1984.
• Multiple telephone companies building their own

infrastructure
• SONET concepts originally developed by Bellcore.
• First standardized by ANSI T1X1 group for US.
• Later by CCITT and developed its own version.
• SONET/SDH standards approved in 1988.

56

06-datalink.ppt, 15-441, Fall 2011 15

15-441 © CMU 2011 57

A Word about Data Rates

• Bandwidth of telephone channel is under 4KHz,
so when digitizing:

 8000 samples/sec * 8 bits = 64Kbits/second
• Common data rates supported by telcos in

North America:
• Modem: rate improved over the years
• T1/DS1: 24 voice channels plus 1 bit per sample
 (24 * 8 + 1) * 8000 = 1.544 Mbits/second
• T3/DS3: 28 T1 channels:
 7 * 4 * 1.544 = 44.736 Mbits/second

57 15-441 © CMU 2011 58

Synchronous Data Transfer

• Sender and receiver are always synchronized.
• Frame boundaries are recognized based on the clock
• No need to continuously look for special bit sequences

• SONET frames contain room for control and data.
• Data frame multiplexes bytes from many users
• Control provides information on data, management, …

3 cols
transport
overhead

87 cols payload capacity

9 rows

58

15-441 © CMU 2011 59

How avoid clock skew?

• Special bit sequences sent in first two chars of
frame
• But no bit stuffing. Hmmm?

• Lots of transitions by xoring with special pattern
(and hope for the best)

59 15-441 © CMU 2011 60

SONET Framing

• Base channel is STS-1 (Synchronous Transport System).
• Takes 125 µsec and corresponds to 51.84 Mbps
• 1 byte/frame corresponds to a 64 Kbs channel (voice)
• Transmitted on an OC-1 optical carrier (fiber link)

• Standard ways of supporting slower and faster channels.
• Support both old standards and future (higher) data rates

3 cols
transport
overhead

87 cols payload capacity,
including 1 col path overhead

9 rows

60

06-datalink.ppt, 15-441, Fall 2011 16

15-441 © CMU 2011 61

How Do We Support Lower
Rates?
• 1 Byte in every consecutive

frame corresponds to a 64
Kbit/second channel.
• 1 voice call.

• Higher bandwidth channels
hold more bytes per frame.
• Multiples of 64 Kbit/second

• Channels have a “telecom”
flavor.
• Fixed bandwidth
• Just data – no headers
• SONET multiplexers remember how

bytes on one link should be mapped
to bytes on the next link
• Byte 33 on incoming link 1 is byte

97 on outgoing link 7

125 µs
125 µs

125 µs

61 15-441 © CMU 2011 62

How Do We Support
Higher Rates?
• Send multiple frames in a 125
µsec time slot.

• The properties of a channel
using a single byte/ST-1
frame are maintained!
• Constant 64 Kbit/second rate
• Nice spacing of the byte samples

• Rates typically go up by a
factor of 4.

• Two ways of doing
interleaving.
• Frame interleaving
• Column interleaving

• concatenated version, i.e. OC-
3c

125 µs
125 µs

125 µs

STS-3chdr

125 µs

62

15-441 © CMU 2011 63

The SONET Signal Hierarchy

63

Signal TypeSignal Type

OC-1OC-1

line rateline rate # of DS0# of DS0

51.84 Mbs51.84 Mbs 672672

OC-3OC-3 155 Mbs155 Mbs 2,0162,016

OC-12OC-12 622 Mbs622 Mbs 8,0648,064

STS-48STS-48 2.49 Gbs2.49 Gbs 32,25632,256

STS-192STS-192 9.95 Gbs9.95 Gbs 129,024129,024

STS-768STS-768 39.8 Gbs39.8 Gbs 516,096516,096

DS0 (POTS)DS0 (POTS) 64 Kbs64 Kbs 11

DS1DS1 1.544 Mbs1.544 Mbs 2424

DS3DS3 44.736 Mbs44.736 Mbs 672672STS-1 carries
one DS-3 plus
overhead

15-441 © CMU 2011 64

Using SONET in Networks

64

muxmux

muxmux

muxmux

DS1

OC-3c

OC-12c

OC-48

Add-drop capability allows soft configuration of networks,
usually managed manually.

06-datalink.ppt, 15-441, Fall 2011 17

15-441 © CMU 2011 65

Self-Healing SONET Rings

65

muxmux muxmux

muxmux

DS1

OC-3c

OC-12c

OC-48

muxmux

15-441 © CMU 2011 66

SONET as Physical Layer

66

OC3/12
Access

OC3/12
Access

OC12/48
Metro

OC3/12
Access

OC3/12
Access

OC12/48
Metro

OC3/12
Access

WDM Backbone
OC48/192

OC12/48
Metro

OC3/12
Access

OC3/12
Access

POP

POPPOP

CO CO

CO
CO

CO

CO

CO

15-441 © CMU 2011 6767 15-441 © CMU 2011 68

Error Detection – CRC

• View data bits, D, as a binary number
• Choose r+1 bit pattern (generator), G
• Goal: choose r CRC bits, R, such that

• <D,R> exactly divisible by G (modulo 2)
• Receiver knows G, divides <D,R> by G. If non-zero remainder:

error detected!
• Can detect all burst errors less than r+1 bits

• Widely used in practice (ATM, HDCL)

68

06-datalink.ppt, 15-441, Fall 2011 18

15-441 © CMU 2011 69

CRC Example

Want:
D.2r XOR R = nG

equivalently:
D.2r = nG XOR R

equivalently:
 if we divide D.2r by G,

want reminder Rb

R = remainder[]
D.2r

G

69

