

Cryptography:

Gur Cbjre bs Xabjyrqtr

15-441, Lecture 5
Wolf Richter

Copyright CMU 2007-2011

Announcements

● HW1 deadline extended to 9/20
● Project 1 Checkpoint 1 this Friday
● Repos: [4:12PM 9/12/11] 21/59 = 35.5%

What will we learn today?

● Why: brief history
● How: Cryptography and Steganography

● Codes
● Ciphers

– Symmetric, Asymmetric

● Today: Kerberos, HTTPS

A continuous arms race

● 1000's of years of guarding secrets
● Spartans – scytale, transposition cipher
● Romans – Caesar Cipher, rotation cipher
● Allied Analysis broke the ADFGVX

● Led to the Zimmerman Letter decryption
● Led to US involvement in WWI

● Breaking ENIGMA during WWII
● Led to Allied tactical advantages

A continuous arms race

Cryptographers Cryptanalysts

Devise cryptosystems

Find weaknesses

Desired properties [Schneier96]

● Confidentiality – Ensure that an eavesdropper can not
read a message.

● Authentication – It should be possible for the receiver of a
message to ascertain its origin; an intruder should not be
able to masqeurade as someone else.

● Integrity – It should be possible for the receiver of a
message to verify that it has not been modified in transit;
an intruder should not be able to substitute a false
message for a legitimate one.

● Nonrepudiation – A sender should not be able to falsely
deny later that he sent a message.

The history of communication

Steganography

● The act of hiding information
● Often in plain sight...
● Example: slightly modify pixel data...

● (R,G,B): (255,255,255) → (255,255,254)

● See app: steghide
● Operates on both images and audio
● Graph-theoretic basis
● man steghide

Steganography

● The act of hiding information
● Often in plain sight...
● Example: slightly modify pixel data...

● (R,G,B): (255,255,255) → (255,255,254)

● See app: steghide
● Operates on both images and audio
● Graph-theoretic basis
● man steghide

When successful, any eavesdropper never knows
that a certain message has been transmitted.

Stegonagraphy

● The act of hiding information
● Often in plainsight...
● Slightly modify pixel data...
● See app: steghide

When successful, any eavesdropper never knows
that a certain message has been transmitted.

Stegonagraphy

● The act of hiding information
● Often in plainsight...
● Slightly modify pixel data...
● See app: steghide

When successful, any eavesdropper never knows
that a certain message has been transmitted.Plausible Deniability

I just sent a picture of a flower...
Deny that any message was sent!

American Revolution, 1775

● One if by land, two if by sea.
● American troops depended on this

information about British movements
● “Paul Revere's Ride,” Henry Wadsworth

Longfellow
● Military message in plain sight
● Plausible deniability—risk of British arrest
● Steganography at work!

Cryptography

● The act of disguising information

● Transforms what is called plain text into cipher text
● Two forms: transposition, and substitution

● Transposition scrambles the plaintext letters
– book → kobo

● Substitution replaces words or characters
– book → cjjl

– Two forms: codes, and ciphers

– Codes replace words for other words
● book → bird

– Ciphers replace individual characters
● Title slide ciphertext: Gur Cbjre bs Xabjyrqtr

The unbreakable cipher

● U.S. Patent 1,310,719
● Vernam Cipher – one-time pad (OTP)
● Mauborgne co-invented—thought of

randomness
● Shannon proved it is both unbreakable

and fundamental!
● Beautiful simplicity
● Incredibly powerful technology

The unbreakable cipher

● U.S. Patent 1,310,719
● Vernam Cipher – one-time pad (OTP)
● Mauborgne co-invented—thought of

randomness
● Shannon proved it is both unbreakable

and fundamental!
● Beautiful simplicity
● Incredibly powerful technology

The NSA has called this patent "perhaps one of the
most important in the history of cryptography."

Is ⊕ a good stream cipher?

Plain Text Key Cipher Text

0 0 0

0 1 1

1 0 1

1 1 0

Vernam Cipher Encrypt

“Hi”

1101000 1101001
Plaintext

Random OTP Key 1110100 1001101

⊕⊕⊕⊕⊕⊕⊕ ⊕⊕⊕⊕⊕⊕⊕

“tM”

Cipher Text 0011100 0100100

“\x1c$”

Vernam Cipher Decrypt

“\x1c$”

0011100 0100100
Cipher Text

Random OTP Key 1110100 1001101

⊕⊕⊕⊕⊕⊕⊕ ⊕⊕⊕⊕⊕⊕⊕

“tM”

Plain Text 1101000 1101001

“Hi”

Symmetric Key Cryptography

● Confidentiality via shared keys

● E
K
(M) = C

● D
K
(C) = M

● OTP is impractical because key length
equals message length

● Alternatives
● Stream Ciphers: RC4, A5/1,2,3 (GSM...)
● Block Ciphers: AES, DES, Blowfish

The treasure chest analogy

Alice Bob

The treasure chest analogy

Alice Bob

Bad, can easily be intercepted and opened,
by the nefarious Eve!

Eve

The treasure chest analogy

Alice Bob

The treasure chest analogy

Alice Bob

Our first very simple protocol.

Hash Message Authentication
Code (HMAC, MAC)

● Hash message using a hash keyed with
shared key

● Produce MAC
● Alice or Bob verify integrity of messages

based on these hashes

Problem: Replay Attacks

● Eve can send messages again...with
observed HMAC

● Fix: introducing nonces
● Random bitstrings used only once
● Provides “sessions” for HMACs

Review: Symmetric

● Confidentiality – Stream/Block Ciphers
● Integrity – HMAC
● Authentication – HMAC and nonce

Perfect crypto, what next?

● Yes, we have the technology
● But, we have a different problem
● How can we share the one-time pads?
● Fundamental problem in cryptography:

Key Distribution

Kerberos: Central Key DB

● Key Distribution Center
● Database of clients and secret keys
● Handles key distribution in symmetric case

● Trusted Arbitrator Service
● Secure network authentication to servers etc.

● Based on Needham-Schroeder's protocol
● From MIT's Project Athena

Kerberos: Authentication Steps

Kerberos TGS

Client Server

1

2 3

4

5

1. Request for ticket-granting ticket
2. Ticket-granting ticket
3. Request for server ticket
4. Server ticket
5. Request for service

Kerberos: Symbols
Symbol Meaning

c client

s server

a client address

v valid times

t timestamp

K
x

x's secret key

K
x,y

Session key for x and y

{m}K
x

m encrypted with K
x

T
x,y

x's ticket to use y

A
x,y

Authenticator from x to y

Kerberos: The protocol

K
c
 – one-way hash of client password

T
c,s
 = s,{c,a,v,K

c,s
}K

s
– ticket

A
c,s
 = {c,t,key}K

c,s
– authenticator, session key optional

1. Client to Kerberos: c, tgs

2. Kerberos to Client: {K
c,tgs

}K
c
, {T

c,tgs
}K

tgs

3. Client to TGS: {A
c,s
}K

c,tgs
, {T

c,tgs
}K

tgs

4. TGS to Client: {K
c,s
}K

c,tgs
, {T

c,s
}K

s

5. Client to Server: {A
c,s
}K

c,s
, {T

c,s
}K

s

[Wikipedia]

One-Way Functions

● Given x, f(x) is trivial to compute
● Given f(x), x is hard to compute
● Example: increase entropy, break a plate
● Math: what we really want are trapdoor

one-way functions

Trapdoor One-Way Functions

● Given f(x) and y, x is trivial to compute
● y is some secret information
● Example: take apart a x = watch, pieces

= f(x), y = assembly instructions
● Math: 16 * 24 = 384

● x = 16, f = *, y = 24

Trapdoor One-Way Functions

● Given f(x) and y, x is trivial to compute
● y is some secret information
● Example: take apart a x = watch, pieces

= f(x), y = assembly instructions
● Math: 16 * 24 = 384

● x = 16, f = *, y = 24

Caveat: No proof these exist, nor even evidence
that they can be constructed mathematically.

Asymmetric Key Cryptography

● Confidentiality via private key

● E
pub
(M) = C

● D
priv

(C) = M

● Distribute public key, hide private key
● You made these with ssh-keygen -t rsa!
● Very practical, but generally slow
● Often (RSA, etc.) asymmetric methods are used

to exchange symmetric keys for fast symmetric
ciphers

The treasure chest analogy

Alice Bob

The treasure chest analogy

Alice Bob

New protocol, no need to have the same key!

Digital Signing

● S
priv
(M) – sign by encrypting (RSA)

● V
pub
(M) – verify via decrypting (RSA)

● Can sign entire messages
● But, often signing a hash is good enough
● Hashes are often shorter—quicker to

compute

Getting to Identity/Authenticity

● Send a nonce
● Used only once!

Client Server
nonce

S
priv

(nonce)

V
pub
(nonce)

Review: Asymmetric

● Confidentiality – Public key encryption
● Integrity – Sign message with private key
● Authentication – Send a nonce challenge,

use sign and verify

Digital Certificates

● Issued to prove identity
● Requires trusted third parties
● We call these certificate authorities
● Or just trusted entities in a web of trust
● Used to implement TLS, HTTPS
● x.509 – standardizations

Certificate Authorities: Issue

Bob's
Public Key

Bob's
Identifying
Information

S
CA
(B')

CA Private Key

B'
Signed

Bob's
Certificate

Certificate Authorities: Usage

Bob's
Public Key

V
CA
(B')

CA Public Key

B'
Signed

Bob's
Certificate

Alice uses the CA's public key to verify Bob's
identity and obtain a trustable public key for Bob.

Public Key Infrastructure (PKI)

● Certificate Authorities

● Bind public keys to certain entities (K
B'

 with Bob)

● DigiNotar – hacked, along with other CAs
● Admin Password: Pr0d@dm1n
● Iranian-based forged Google, and more certificates

● Web of Trust
● P2P model, let many others sign your public key
● Place trust in certain signatures
● GnuPG, PGP → implement this

Really? Yes!

HTTPS = HTTP+TLS

HTTP (Application)

Secure Transport/TLS

Transport Layer (TCP)

Network Layer (IP)

Link Layer (Ethernet)

Hardware Layer

Netscape made SSL,
IETF made TLS based
on SSL

HTTP is unmodified!

HTTPS

Port 443 is dedicated
for this.

TLS—RFC 2246

● Negotiate

1) Data integrity hash—HMACs

2) Symmetric-key cipher for confidentiality (DES,
3DES, AES)

3) Session key establishment (DH, RSA)

4) Compression algorithm*
● HMACs and ciphers are keyed in both directions
● 6 keys needed total! All delivered with a shared

master secret

TLS Handshaking [RFC 2246]

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Figure 1. Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

What's going on?

● Negotiation Hello's == protocols, crypto
methods, compression

● Server certificate (signed public key)
● Validate with browser set of CA's

● Client sends encrypted value to server, server
decrypts proving private key ownership

● Secret value used to derive symmetric session
keys for encryption and MACs

Really? Yes!

TLS Data Stream

1) Data arrives as stream (TCP expected!)

2) TLS segments into chunks

3*) Session key encrypts chunks, MAC algorithm
used to create TLS record with short header

4) Records form byte stream for TCP layer

Takeaways

● Serious challenges in communicating
securely

● Don't design your own
● Practical solutions combine multiple

methods
● Defense in depth is needed in the real-

world—cryptography alone is not enough

Resources

● Textbook CH8
● Beware of Snake Oil, Phil Zimmerman

● Easy read, available online

● Applied Cryptography, Bruce Schneier
● RFC's
● OpenSSL (www.openssl.org)

http://www.openssl.org/

GitHub:

git clone git://github.com/theonewolf/15-441-Recitation-Sessions.git

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	page42

