
1

Systems Dev. Tutorial II:

Make, utilities, & scripting

15-441 Recitation
Wednesday, Sept 13th, 2006

Overview

� Compiling with gcc
� Using makefiles
� tar, grep, & sed
� Basic shell scripts

Simple gcc

If we have files:
• prog.c: The main program file
• lib.c: Library .c file
• lib.h: Library header file

gcc -c prog.c (create prog.o)
gcc -c lib.c (create lib.o)
gcc lib.o prog.o -o myprog (create binary)

gcc flags

Flags can help gcc find external libraries, tell it to
provide more information, or instruct it to modify output.

Useful Flags:
-g : includes debugging symbols
-Wall : errors on “suspicious code”
-lsocket, -lnsl : include external networking libs
-O3 : optimize code for speed (not development)
-E : stop compilation after pre-processing macros

Makefiles

What are they?
Simple way to invoke different build, link and
test behavior.

Why use them?
- save typing
- avoid silly mistakes
- automate good behavior (e.g. tests)

Key Makefile Concepts

� Variables
Can be defined in file, extracted from ENV or set to defaults by

Make.

� Targets
Specify different possible actions within the makefile. Type
“make <target name>”

� Dependencies
If one target relies on the result of another, this is described
as a dependency. Automatically tracks need to recompile
based on file modification times.

� Spacing & Lines Matter
Certain white-space must be tabs, lines extended using “\”

2

Makefile Example
This is a comment

CFLAGS=-Wall -g
LIBS=lib.o \

lib2.o
HEADERS=lib.h
BINS=prog

all: ${BINS}

prog: prog.o ${LIBS} ${HEADERS}
${CC} ${LDFLAGS} prog.o ${LIBS} -o $@

test:
./run_tests.sh

clean:
/bin/rm -rf ${BINS} *.o core *.core

3 very useful utilities

� tar : create and unpack archives of files

� grep: search for a text string or regular
expression within a set of files…

� sed: powerful search and replace for within a
set of files

tar

collect files & directories into a single file,
possibly compressed, archive.

examples:
archive: tar czf my_code.tar.gz my_code/

unpack: tar xzf my_code.tar.gz

grep

search a set of files for lines that contain a
certain string, or match a regular expression.

basic: egrep hello debug.txt

recursive: egrep -r hello .

Advanced (line number, case insenstive):

egrep -n -i‘strcpy|strlen’ sock.c

sed

“stream editor” useful for powerful search and
replace operations, of filtering data files.

examples:
Search/replace:
sed -e ‘s/Bush/Andersen/g’ votes.txt > new_votes.txt

Filter for some text:
sed -e ‘/[^error1]/d’ debug.txt

shell scripting

Basic idea: anything you type into the
command-line can be automated.

e.g. create script to run all tests.

Suggestions:
1) Use –x option to debug line-by-line
2) With great power, comes….

3

Shell Example (run_tests.sh)

#!/bin/bash

this is a comment

if [“$1” = “all”]; then
for file in input1.txt input2.txt input3.txt ; do

echo “beginning test with file ‘$file’”
./myprog < $file

done
else

echo “running main test”
./myprog < input1.txt

fi

echo “done with tests”

Walk-through on
Andrew

wget http://www.cs.cmu.edu/~dwendlan/make_fun.tar.gz

General Hints…

� When in doubt… “make clean”
� Tab-complete and command history are your

friends.
� Pick one editor and learn it WELL
� Always compile with –Wall, -g for dev.
� Google error messages… find root cause
� If you find yourself doing something

repetitively, script it!

References/Tutorials

Obviously, “man <command name>”

� gcc: http://www.cs.washington.edu/orgs/acm/tutorials/dev-in-unix/compiler.html
� Make: http://www.hsrl.rutgers.edu/ug/make_help.html
� Grep : http://pegasus.rutgers.edu/~elflord/unix/grep.html
� Sed: http://pegasus.rutgers.edu/-~elflord/unix/sed.html
� Shell Scripting:

http://www.linuxfocus.org/English/September2001/article216.shtml

If you’re serious about work in computer systems,
take the time to learn these tools NOW.

Project 1 & Homework 1 Q & A

� HW1 due 9/21
� Project 1 due

� next checkpoint 9/26
� final assignment due 10/12

Other questions?

