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15-441 Lecture
Nov. 21st 2006
Dan Wendlandt
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Worms & Viruses

Denial-of-Service

DNS Poisoning

Phishing

Trojan Horse

Traffic 
Eavesdropping 

Route Hijacks 

Password 
Cracking 

IP Spoofing 

Spam

Spyware

Traffic 
modification

End-host 
impersonation
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� Origin as a small and cooperative network 
(=> largely trusted infrastructure)

� Global Addressing 
(=> every sociopath is your next-door 
neighbor*)  

� Connection-less datagram service 
(=> can’t verify source, hard to protect 
bandwidth)

* Dan Geer
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� Anyone can connect 
(=> ANYONE can connect)

� Millions of hosts run nearly identical software 
(=> single exploit can create epidemic)

� Most Internet users know about as much as 
Senator Stevens aka “the tubes guy” 

(=> God help us all…) 
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Yes:
1) Creating a “secure channel” for 
communication  (today)
2) Protecting network resources and limiting 
connectivity (next Tuesday)

No:
1) Preventing software vulnerabilities & 
malware, or “social engineering”.  
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ISP AISP A

ISP DISP D

ISP CISP C

ISP BISP B

Alice

Bob
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ISP AISP A

ISP DISP D

ISP CISP C

ISP BISP B

Alice

Bob
Mallory
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ISP AISP A

ISP DISP D

ISP CISP C

ISP BISP B

Alice
Hello, I’m

“Bob”
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� Authentication (Who am I talking to?)

� Confidentiality (Is my data hidden?)

� Integrity (Has my data been modified?)

� Availability (Can I reach the destination?)  
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"cryptography is about communication in the 
presence of adversaries." 

- Ron Rivest

“cryptography is using math and other crazy 
tricks to approximate magic”

- Unknown 441 TA
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Tools to help us build secure communication 
channels that provide:

1) Authentication
2) Integrity
3) Confidentiality
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� Using cryptography securely is not simple
� Designing cryptographic schemes correctly is 

near impossible.  

Today we want to give you an idea of what 
can be done with cryptography.
Take a security course if you think you may 
use it in the future (e.g. 18-487)
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Symmetric Crypto: 
(Private key)

Example: AES

Asymmetric Crypto: 
(Public key)
Example: RSA

Requires a pre-
shared secret 
between 
communicating 
parties?

Yes

Overall speed of 
cryptographic 
operations Slow

No

Fast 
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Motivating Example:
You and a friend share a key K of L random bits, 
and a message M also L bits long.

Scheme:
You send her the xor(M,K) and then they “decrypt” 
using xor(M,K) again.  

1) Do you get the right message to your friend?  

2) Can an adversary recover the message M?  
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� One-time Pad (OTP) is secure but usually impactical
� Key is as long at the message
� Keys cannot be reused (why?)

Stream Ciphers:
Ex: RC4, A5

Block Ciphers:
Ex: DES, AES, Blowfish

In practice, two types of ciphers are used 
that require only constant key length: 
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� Stream Ciphers (ex: RC4)

PRNG Pseudo-Random stream of L bits

Message of Length L bits
XOR

=
Encrypted Ciphertext

K A-B

Bob uses KA-B as PRNG seed, and XORs encrypted text 
to get the message back (just like OTP).  

Alice: 
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Block 4Block 3Block 2Block 1

Round #1 Round #2 Round #n

Block 1

� Block Ciphers (ex: AES)

K A-B

Alice:

Bob breaks the ciphertext into blocks, feeds it through 
decryption engine using KA-B to recover the message.

Block 2 Block 3 Block 4

(fixed block size, e.g. 
128 bits)
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� Background: Hash Function Properties
� Consistent 

hash(X) always yields same result
� One-way 

given X, can’t find Y s.t. hash(Y) = X 
� Collision resistant 

given hash(W) = Z, can’t find X such that hash(X) = Z 

Hash FnMessage of arbitrary length
Fixed Size 

Hash
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� Hash Message Authentication Code (HMAC) 

Hash Fn
Message

MAC Message

Alice Transmits Message & MAC

Why is this secure?  How do properties 
of a hash function help us?

MAC

Step #1:

Alice creates 
MAC

Step #2 Step #3

Bob computes MAC with 
message and KA-B to verify.

K A-B
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� You already know how to do this!
(hint: think about how we showed integrity)

Hash Fn
I am Bob

A43FF234

Alice receives the hash, computes a hash with KA-B , and she 
knows the sender is Bob

Wrong!

K A-B
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What is Mallory overhears the hash sent by Bob, 
and then “replays” it later?  

ISP AISP A

ISP DISP D

ISP CISP C

ISP BISP B

Hello, I’m
Bob. Here’s 
the hash to 
“prove” it

A43FF234
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� A “Nonce”
� A random bitstring used only once. Alice sends nonce to 

Bob as a “challenge”.  Bob Replies with “fresh” MAC result. 

Hash 
Nonce

B4FE64

Bob

K A-B

Nonce

B4FE64

Alice

Performs same 
hash with KA-B
and compares 
results
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� A “Nonce”
� A random bitstring used only once. Alice sends nonce to 

Bob as a “challenge”.  Bob Replies with “fresh” MAC result. 

Nonce

Alice

?!?!

If Alice sends Mallory a nonce, she 
cannot compute the corresponding 
MAC without K A-B

Mallory
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� Confidentiality:  Stream & Block Ciphers
� Integrity:  HMAC
� Authentication: HMAC and Nonce

Questions??

Are we done?  Not Really:

1) Number of keys scales as O(n2) 

2) How to securely share keys in the first place? 
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� Instead of shared keys, each person has a 
“key pair”

Bob’s public key 

Bob’s private key 

KB

KB
-1 

� The keys are inverses, so: KB
-1 (KB (m)) = m
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� It is believed to be computationally unfeasible 
to derive KB

-1 from KB or to find any way to get 
M from KB(M) other than using KB

-1 .  

=> KB can safely be made public.

Note: We will not detail the computation that KB(m) entails, but rather 

treat these functions as black boxes with the desired properties.
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ciphertextencryption
algorithm

decryption 
algorithm

Bob’s public
key 

plaintext
message

KB (m)

Bob’s private
key 

m = KB
-1 (KB (m))

KB

KB
-1 
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� The message must be from Bob, because it must be 
the case that S = KB

-1(M), and only Bob has KB
-1 ! 

� If we are given a message M, and a value S 
such that KB(S) = M, what can we conclude? 

� This gives us two primitives:
� Sign (M) = KB

-1(M) = Signature S
� Verify  (S, M) = test( KB(S) == M ) 
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� We can use Sign() and Verify() in a similar 
manner as our HMAC in symmetric schemes.

Integrity:
S = Sign(M) Message M

Receiver must only check Verify(M, S) 

Authentication:
Nonce

S = Sign(Nonce)
Verify(Nonce, S)
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� Confidentiality: Encrypt with Public Key of 
Receiver

� Integrity: Sign message with private key of 
the sender

� Authentication: Entity being authenticated 
signs a nonce with private key, signature is 
then verified with the public key

But, these operations are computationally expensive*
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How do I get these keys in the first place??
Remember:

� Symmetric key primitives assumed Alice and Bob 
had already shared a key.

� Asymmetric key primitives assumed Alice knew 
Bob’s public key.  

This may work with friends, but when was the last 
time you saw Amazon.com walking down the street? 
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� How does Andrew do this?

Andrew Uses Kerberos, which relies on a 
Key Distribution Center (KDC) to establish 
shared symmetric keys.
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� Alice, Bob need shared symmetric key.
� KDC: server shares different secret key with each 

registered user (many users)
� Alice, Bob know own symmetric keys, KA-KDC KB-KDC , 

for communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC
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Alice
knows 

R1

Bob knows to 
use  R1 to 

communicate 
with Alice

Alice and Bob communicate: using R1 as 
session key for shared symmetric encryption 

Q: How does KDC allow Bob, Alice to determine shared 
symmetric secret key to communicate with each other? 

KDC 
generates  

R1

KB-KDC(A,R1) 

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1) )
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� Must always be online to support secure 
communication

� KDC can expose our session keys to others!
� Centralized trust and point of failure.

In practice, the KDC model is mostly used 
within single organizations (e.g. Kerberos) 
but not more widely.  
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� Definition:
Public Key Infrastructure (PKI)

1) A system in which “roots of trust” 
authoritatively bind public keys to real-world 
identities

2) A significant stumbling block in deploying  
many “next generation” secure Internet 
protocol or applications.    
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� Certification authority (CA): binds public key to 
particular entity, E.

� An entity E registers its public key with CA.
� E provides “proof of identity” to CA. 
� CA creates certificate binding E to its public key.
� Certificate contains E’s public key AND the CA’s 

signature of E’s public key.  
Bob’s 
public

key 

Bob’s 
identifying 

information 

CA 
generates

S = Sign(KB)

CA 
private

key 

certificate = Bob’s 
public key and  

signature by CA

KB 

K-1
CA

KB
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� When Alice wants Bob’s public key:
� Gets Bob’s certificate (Bob or elsewhere).
� Use CA’s public key to verify the signature within 

Bob’s certificate, then accepts public key

Verify(S, KB)

CA 
public

key KCA

KB If signature is 
valid, use KB
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�
� info algorithm and key value itself (not shown)

� Cert owner
� Cert issuer
� Valid dates
� Fingerprint 

of signature
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� Used for protocols like HTTPS

� Special TLS socket layer between application and 
TCP (small changes to application).

� Handles confidentiality, integrity, and authentication.

� Uses “hybrid” cryptography. 
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Handshake Steps: 

1) Clients and servers negotiate 
exact cryptographic protocols

2) Client’s validate public key 
certificate with CA public key. 

3) Client encrypt secret random 
value with servers key, and send 
it as a challenge.  

4) Server decrypts, proving it has 
the corresponding private key.

5) This value is used to derive 
symmetric session keys for 
encryption & MACs.
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1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS “record”, 
which includes a short header and data that is encrypted, as well as a MAC.  

4) Records form a byte stream that is fed to a TCP socket for transmission.  
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� Internet design and growth => security challenges
� Symmetric (pre-shared key, fast) and asymmetric 

(key pairs, slow) primitives provide:
� Confidentiality
� Integrity
� Authentication

� “Hybrid Encryption” leverages strengths of both.
� Great complexity exists in securely acquiring keys.
� Crypto is hard to get right, so use tools from others, 

don’t design your own (e.g. TLS).  
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� Textbook: 8.1 – 8.3

� Wikipedia for overview of Symmetric/Asymmetric 
primitives and Hash functions.  

� OpenSSL (www.openssl.org): top-rate open source code 
for SSL and primitive functions.  

� “Handbook of Applied Cryptography” available free 
online: www.cacr.math.uwaterloo.ca/hac/ 


