
1

���������		�
���
��
���
���
�

�
��������

��
�
��
����
���
���

15-441 Lecture
Nov. 21st 2006
Dan Wendlandt

���
������

��
�
�������
�����

Worms & Viruses

Denial-of-Service

DNS Poisoning

Phishing

Trojan Horse

Traffic
Eavesdropping

Route Hijacks

Password
Cracking

IP Spoofing

Spam

Spyware

Traffic
modification

End-host
impersonation

�

��
�
������
��������
��

������������������
��������

� Origin as a small and cooperative network
(=> largely trusted infrastructure)

� Global Addressing
(=> every sociopath is your next-door
neighbor*)

� Connection-less datagram service
(=> can’t verify source, hard to protect
bandwidth)

* Dan Geer

�

��
�
������
��������
��

������������������
��������

� Anyone can connect
(=> ANYONE can connect)

� Millions of hosts run nearly identical software
(=> single exploit can create epidemic)

� Most Internet users know about as much as
Senator Stevens aka “the tubes guy”

(=> God help us all…)

������������� ����

Yes:
1) Creating a “secure channel” for
communication (today)
2) Protecting network resources and limiting
connectivity (next Tuesday)

No:
1) Preventing software vulnerabilities &
malware, or “social engineering”.

���������		�
���
��
���
���
�!

���
���

�
����
���
���

ISP AISP A

ISP DISP D

ISP CISP C

ISP BISP B

Alice

Bob

2

���������		�
���
��
���
���
�!

���
���

�
����
���
���

ISP AISP A

ISP DISP D

ISP CISP C

ISP BISP B

Alice

Bob
Mallory

���������		�
���
��
���
���
�!

���
���

�
����
���
���

ISP AISP A

ISP DISP D

ISP CISP C

ISP BISP B

Alice
Hello, I’m

“Bob”

���
�������
�����������������

��		�
���
��
����

�"���

� Authentication (Who am I talking to?)

� Confidentiality (Is my data hidden?)

� Integrity (Has my data been modified?)

� Availability (Can I reach the destination?)

���
�������#
����#���

"cryptography is about communication in the
presence of adversaries."

- Ron Rivest

“cryptography is using math and other crazy
tricks to approximate magic”

- Unknown 441 TA

���
�������#
����#�����

Tools to help us build secure communication
channels that provide:

1) Authentication
2) Integrity
3) Confidentiality

���#
����#���$����%��"

� Using cryptography securely is not simple
� Designing cryptographic schemes correctly is

near impossible.

Today we want to give you an idea of what
can be done with cryptography.
Take a security course if you think you may
use it in the future (e.g. 18-487)

3

%���&���
���'���

Symmetric Crypto:
(Private key)

Example: AES

Asymmetric Crypto:
(Public key)
Example: RSA

Requires a pre-
shared secret
between
communicating
parties?

Yes

Overall speed of
cryptographic
operations Slow

No

Fast

��		�
����(������
����

��"�
�

Motivating Example:
You and a friend share a key K of L random bits,
and a message M also L bits long.

Scheme:
You send her the xor(M,K) and then they “decrypt”
using xor(M,K) again.

1) Do you get the right message to your friend?

2) Can an adversary recover the message M?

��		�
����(������
����

��"�
�

� One-time Pad (OTP) is secure but usually impactical
� Key is as long at the message
� Keys cannot be reused (why?)

Stream Ciphers:
Ex: RC4, A5

Block Ciphers:
Ex: DES, AES, Blowfish

In practice, two types of ciphers are used
that require only constant key length:

��		�
����(������
����

��"�
�

� Stream Ciphers (ex: RC4)

PRNG Pseudo-Random stream of L bits

Message of Length L bits
XOR

=
Encrypted Ciphertext

K A-B

Bob uses KA-B as PRNG seed, and XORs encrypted text
to get the message back (just like OTP).

Alice:

��		�
����(������
����

��"�
�

Block 4Block 3Block 2Block 1

Round #1 Round #2 Round #n

Block 1

� Block Ciphers (ex: AES)

K A-B

Alice:

Bob breaks the ciphertext into blocks, feeds it through
decryption engine using KA-B to recover the message.

Block 2 Block 3 Block 4

(fixed block size, e.g.
128 bits)

��		�
����(�����

����
�

� Background: Hash Function Properties
� Consistent

hash(X) always yields same result
� One-way

given X, can’t find Y s.t. hash(Y) = X
� Collision resistant

given hash(W) = Z, can’t find X such that hash(X) = Z

Hash FnMessage of arbitrary length
Fixed Size

Hash

4

��		�
����(�����

����
�

� Hash Message Authentication Code (HMAC)

Hash Fn
Message

MAC Message

Alice Transmits Message & MAC

Why is this secure? How do properties
of a hash function help us?

MAC

Step #1:

Alice creates
MAC

Step #2 Step #3

Bob computes MAC with
message and KA-B to verify.

K A-B

��		�
����(����$�
��

���
��

� You already know how to do this!
(hint: think about how we showed integrity)

Hash Fn
I am Bob

A43FF234

Alice receives the hash, computes a hash with KA-B , and she
knows the sender is Bob

Wrong!

K A-B

��		�
����(����$�
��

���
��

What is Mallory overhears the hash sent by Bob,
and then “replays” it later?

ISP AISP A

ISP DISP D

ISP CISP C

ISP BISP B

Hello, I’m
Bob. Here’s
the hash to
“prove” it

A43FF234

��		�
����(����$�
��

���
��

� A “Nonce”
� A random bitstring used only once. Alice sends nonce to

Bob as a “challenge”. Bob Replies with “fresh” MAC result.

Hash
Nonce

B4FE64

Bob

K A-B

Nonce

B4FE64

Alice

Performs same
hash with KA-B
and compares
results

��		�
����(����$�
��

���
��

� A “Nonce”
� A random bitstring used only once. Alice sends nonce to

Bob as a “challenge”. Bob Replies with “fresh” MAC result.

Nonce

Alice

?!?!

If Alice sends Mallory a nonce, she
cannot compute the corresponding
MAC without K A-B

Mallory

��		�
����(������#
��)�'���

� Confidentiality: Stream & Block Ciphers
� Integrity: HMAC
� Authentication: HMAC and Nonce

Questions??

Are we done? Not Really:

1) Number of keys scales as O(n2)

2) How to securely share keys in the first place?

5

$��		�
����(������#
��

� Instead of shared keys, each person has a
“key pair”

Bob’s public key

Bob’s private key

KB

KB
-1

� The keys are inverses, so: KB
-1 (KB (m)) = m

$��		�
����(������#
��

� It is believed to be computationally unfeasible
to derive KB

-1 from KB or to find any way to get
M from KB(M) other than using KB

-1 .

=> KB can safely be made public.

Note: We will not detail the computation that KB(m) entails, but rather

treat these functions as black boxes with the desired properties.

$��		�
����(������
����

��"�
�

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
message

KB (m)

Bob’s private
key

m = KB
-1 (KB (m))

KB

KB
-1

$��		�
����(�������
�*�+�����

� The message must be from Bob, because it must be
the case that S = KB

-1(M), and only Bob has KB
-1 !

� If we are given a message M, and a value S
such that KB(S) = M, what can we conclude?

� This gives us two primitives:
� Sign (M) = KB

-1(M) = Signature S
� Verify (S, M) = test(KB(S) == M)

$��		�
����(�����

����
��*�

$�
��

���
��

� We can use Sign() and Verify() in a similar
manner as our HMAC in symmetric schemes.

Integrity:
S = Sign(M) Message M

Receiver must only check Verify(M, S)

Authentication:
Nonce

S = Sign(Nonce)
Verify(Nonce, S)

$��		�
����(���)�'����

� Confidentiality: Encrypt with Public Key of
Receiver

� Integrity: Sign message with private key of
the sender

� Authentication: Entity being authenticated
signs a nonce with private key, signature is
then verified with the public key

But, these operations are computationally expensive*

6

�
��"��
��"�

"����
��"�,

How do I get these keys in the first place??
Remember:

� Symmetric key primitives assumed Alice and Bob
had already shared a key.

� Asymmetric key primitives assumed Alice knew
Bob’s public key.

This may work with friends, but when was the last
time you saw Amazon.com walking down the street?

��		�
����(������
��-�
��

� How does Andrew do this?

Andrew Uses Kerberos, which relies on a
Key Distribution Center (KDC) to establish
shared symmetric keys.

(������
��-�
��
���

����(���

� Alice, Bob need shared symmetric key.
� KDC: server shares different secret key with each

registered user (many users)
� Alice, Bob know own symmetric keys, KA-KDC KB-KDC ,

for communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

(������
��-�
��
���

����(���

Alice
knows

R1

Bob knows to
use R1 to

communicate
with Alice

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared
symmetric secret key to communicate with each other?

KDC
generates

R1

KB-KDC(A,R1)

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1))

.���!����"������(���

� Must always be online to support secure
communication

� KDC can expose our session keys to others!
� Centralized trust and point of failure.

In practice, the KDC model is mostly used
within single organizations (e.g. Kerberos)
but not more widely.

%�����������/(�

� Definition:
Public Key Infrastructure (PKI)

1) A system in which “roots of trust”
authoritatively bind public keys to real-world
identities

2) A significant stumbling block in deploying
many “next generation” secure Internet
protocol or applications.

7

���
�����
��
�$�
����
���

� Certification authority (CA): binds public key to
particular entity, E.

� An entity E registers its public key with CA.
� E provides “proof of identity” to CA.
� CA creates certificate binding E to its public key.
� Certificate contains E’s public key AND the CA’s

signature of E’s public key.
Bob’s
public

key

Bob’s
identifying

information

CA
generates

S = Sign(KB)

CA
private

key

certificate = Bob’s
public key and

signature by CA

KB

K-1
CA

KB

���
�����
��
�$�
����
���

� When Alice wants Bob’s public key:
� Gets Bob’s certificate (Bob or elsewhere).
� Use CA’s public key to verify the signature within

Bob’s certificate, then accepts public key

Verify(S, KB)

CA
public

key KCA

KB If signature is
valid, use KB

���
�����
����

�

�
� info algorithm and key value itself (not shown)

� Cert owner
� Cert issuer
� Valid dates
� Fingerprint

of signature

%��
�#��
�0�����������
���%0��

�1� ����������1�
�0��������0�

� Used for protocols like HTTPS

� Special TLS socket layer between application and
TCP (small changes to application).

� Handles confidentiality, integrity, and authentication.

� Uses “hybrid” cryptography.

��
�#����

�"���
��%0���.�
����1���

Handshake Steps:

1) Clients and servers negotiate
exact cryptographic protocols

2) Client’s validate public key
certificate with CA public key.

3) Client encrypt secret random
value with servers key, and send
it as a challenge.

4) Server decrypts, proving it has
the corresponding private key.

5) This value is used to derive
symmetric session keys for
encryption & MACs.

.���%0��.�
�"�����
�
1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS “record”,
which includes a short header and data that is encrypted, as well as a MAC.

4) Records form a byte stream that is fed to a TCP socket for transmission.

8

���
�
��
�1����	���

� Internet design and growth => security challenges
� Symmetric (pre-shared key, fast) and asymmetric

(key pairs, slow) primitives provide:
� Confidentiality
� Integrity
� Authentication

� “Hybrid Encryption” leverages strengths of both.
� Great complexity exists in securely acquiring keys.
� Crypto is hard to get right, so use tools from others,

don’t design your own (e.g. TLS).

)��������

� Textbook: 8.1 – 8.3

� Wikipedia for overview of Symmetric/Asymmetric
primitives and Hash functions.

� OpenSSL (www.openssl.org): top-rate open source code
for SSL and primitive functions.

� “Handbook of Applied Cryptography” available free
online: www.cacr.math.uwaterloo.ca/hac/

