
1

15-441 Computer Networking

Lecture 20 – TCP Performance

11-07-06 Lecture 20: TCP Congestion Control 2

Outline

• TCP congestion avoidance

• TCP slow start

• TCP modeling

11-07-06 Lecture 20: TCP Congestion Control 3

Additive Increase/Decrease

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

• Both X1 and X2
increase/ decrease
by the same amount
over time
• Additive increase

improves fairness and
additive decrease
reduces fairness

11-07-06 Lecture 20: TCP Congestion Control 4

Muliplicative Increase/Decrease

• Both X1 and X2
increase by the
same factor over
time
• Extension from

origin – constant
fairness

T0

T1

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

2

11-07-06 Lecture 20: TCP Congestion Control 5

What is the Right Choice?

• Constraints limit
us to AIMD
• Improves or

keeps fairness
constant at
each step

• AIMD moves
towards optimal
point

x0

x1

x2

Efficiency Line

Fairness Line

User 1’s Allocation x1

User 2’s
Allocation

x2

11-07-06 Lecture 20: TCP Congestion Control 6

TCP Congestion Control

• Changes to TCP motivated by ARPANET
congestion collapse

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly
• ACK clocking

11-07-06 Lecture 20: TCP Congestion Control 7

AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and results in a

multiplicative rate decrease
• Factor of 2

• TCP periodically probes for available bandwidth by
increasing its rate

Time

Rate

11-07-06 Lecture 20: TCP Congestion Control 8

Implementation Issue

• Operating system timers are very coarse – how to pace
packets out smoothly?

• Implemented using a congestion window that limits how
much data can be in the network.
• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding
data is less than the congestion window.
• The amount of outstanding data is increased on a “send” and

decreased on “ack”
• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window, cwnd)

3

11-07-06 Lecture 20: TCP Congestion Control 9

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet? 1 MSS worth of bytes
• After cwnd packets have passed by approximately increase

of 1 MSS

• Implements AIMD

11-07-06 Lecture 20: TCP Congestion Control 10

Congestion Avoidance Sequence Plot

Time

Sequence No

Packets

Acks

11-07-06 Lecture 20: TCP Congestion Control 11

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

11-07-06 Lecture 20: TCP Congestion Control 12

Packet Conservation

• At equilibrium, inject packet into network only
when one is removed
• Sliding window and not rate controlled
• But still need to avoid sending burst of packets

would overflow links
• Need to carefully pace out packets
• Helps provide stability

• Need to eliminate spurious retransmissions
• Accurate RTO estimation
• Better loss recovery techniques (e.g. fast retransmit)

4

11-07-06 Lecture 20: TCP Congestion Control 13

TCP Packet Pacing

• Congestion window helps to “pace” the transmission of
data packets

• In steady state, a packet is sent when an ack is received
• Data transmission remains smooth, once it is smooth
• Self-clocking behavior

Pr

Pb

ArAb

ReceiverSender

As

11-07-06 Lecture 20: TCP Congestion Control 14

How to Change Window

• When a loss occurs have W packets outstanding
• New cwnd = 0.5 * cwnd

• How to get to new state without losing ack clocking?

11-07-06 Lecture 20: TCP Congestion Control 15

Fast Recovery

• Each duplicate ack notifies sender that single
packet has cleared network

• When < cwnd packets are outstanding
• Allow new packets out with each new duplicate

acknowledgement
• Behavior

• Sender is idle for some time – waiting for ½ cwnd worth
of dupacks

• Transmits at original rate after wait
• Ack clocking rate is same as before loss

11-07-06 Lecture 20: TCP Congestion Control 16

Fast Recovery

Time

Sequence No
Sent for each dupack after

W/2 dupacks arrive
X

Packets

Acks

5

11-07-06 Lecture 20: TCP Congestion Control 17

Outline

• TCP congestion avoidance

• TCP slow start

• TCP modeling

11-07-06 Lecture 20: TCP Congestion Control 18

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

11-07-06 Lecture 20: TCP Congestion Control 19

Reaching Steady State

• Doing AIMD is fine in steady state but slow…
• How does TCP know what is a good initial rate to

start with?
• Should work both for a CDPD (10s of Kbps or less) and

for supercomputer links (10 Gbps and growing)
• Quick initial phase to help get up to speed (slow

start)

11-07-06 Lecture 20: TCP Congestion Control 20

Slow Start Packet Pacing

• How do we get this
clocking behavior to start?
• Initialize cwnd = 1
• Upon receipt of every ack,

cwnd = cwnd + 1
• Implications

• Window actually increases to
W in RTT * log2(W)

• Can overshoot window and
cause packet loss

6

11-07-06 Lecture 20: TCP Congestion Control 21

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

11-07-06 Lecture 20: TCP Congestion Control 22

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

11-07-06 Lecture 20: TCP Congestion Control 23

Return to Slow Start

• If packet is lost we lose our self clocking as well
• Need to implement slow-start and congestion

avoidance together
• When retransmission occurs set ssthresh to 0.5w

• If cwnd < ssthresh, use slow start
• Else use congestion avoidance

11-07-06 Lecture 20: TCP Congestion Control 24

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

7

11-07-06 Lecture 20: TCP Congestion Control 25

Outline

• TCP congestion avoidance

• TCP slow start

• TCP modeling

11-07-06 Lecture 20: TCP Congestion Control 26

TCP Performance

• Can TCP saturate a link?
• Congestion control

• Increase utilization until… link becomes congested
• React by decreasing window by 50%
• Window is proportional to rate * RTT

• Doesn’t this mean that the network oscillates
between 50 and 100% utilization?
• Average utilization = 75%??
• No…this is *not* right!

11-07-06 Lecture 20: TCP Congestion Control 27

TCP Congestion Control

Only W packets
may be outstanding

Rule for adjusting W
• If an ACK is received: W ← W+1/W
• If a packet is lost: W ← W/2

Source Dest

maxW

2
maxW

t

Window size

11-07-06 Lecture 20: TCP Congestion Control 28

Single TCP Flow
Router without buffers

8

11-07-06 Lecture 20: TCP Congestion Control 29

Summary Unbuffered Link

t

W Minimum window
for full utilization

• The router can’t fully utilize the link
• If the window is too small, link is not full
• If the link is full, next window increase causes drop
• With no buffer it still achieves 75% utilization

11-07-06 Lecture 20: TCP Congestion Control 30

TCP Performance

• In the real world, router queues play important
role
• Window is proportional to rate * RTT

• But, RTT changes as well the window

• Window to fill links = propagation RTT * bottleneck
bandwidth
• If window is larger, packets sit in queue on bottleneck link

11-07-06 Lecture 20: TCP Congestion Control 31

TCP Performance

• If we have a large router queue can get 100%
utilization
• But, router queues can cause large delays

• How big does the queue need to be?
• Windows vary from W W/2

• Must make sure that link is always full
• W/2 > RTT * BW
• W = RTT * BW + Qsize
• Therefore, Qsize > RTT * BW

• Ensures 100% utilization
• Delay?

• Varies between RTT and 2 * RTT

11-07-06 Lecture 20: TCP Congestion Control 32

Single TCP Flow
Router with large enough buffers for full link utilization

9

11-07-06 Lecture 20: TCP Congestion Control 33

Summary Buffered Link

t

W

Minimum window
for full utilization

• With sufficient buffering we achieve full link utilization
• The window is always above the critical threshold
• Buffer absorbs changes in window size

• Buffer Size = Height of TCP Sawtooth
• Minimum buffer size needed is 2T*C

• This is the origin of the rule-of-thumb

Buffer

11-07-06 Lecture 20: TCP Congestion Control 34

TCP (Summary)

• General loss recovery
• Stop and wait
• Selective repeat

• TCP sliding window flow control
• TCP state machine
• TCP loss recovery

• Timeout-based
• RTT estimation

• Fast retransmit
• Selective acknowledgements

11-07-06 Lecture 20: TCP Congestion Control 35

TCP (Summary)

• Congestion collapse
• Definition & causes

• Congestion control
• Why AIMD?
• Slow start & congestion avoidance modes
• ACK clocking

• Packet conservation
• TCP performance modeling

• How does TCP fully utilize a link?
• Role of router buffers

EXTRA SLIDES

The rest of the slides are FYI

10

11-07-06 Lecture 20: TCP Congestion Control 37

TCP Variations

• Tahoe, Reno, NewReno, Vegas
• TCP Tahoe (distributed with 4.3BSD Unix)

• Original implementation of Van Jacobson’s
mechanisms (VJ paper)

• Includes:
• Slow start
• Congestion avoidance
• Fast retransmit

11-07-06 Lecture 20: TCP Congestion Control 38

Multiple Losses

Time

Sequence No
Duplicate Acks

Retransmission
X

X

XX

Now what?

Packets

Acks

11-07-06 Lecture 20: TCP Congestion Control 39

Time

Sequence No
X

X

XX

Tahoe

Packets

Acks

11-07-06 Lecture 20: TCP Congestion Control 40

TCP Reno (1990)

• All mechanisms in Tahoe
• Addition of fast-recovery

• Opening up congestion window after fast retransmit
• Delayed acks
• Header prediction

• Implementation designed to improve performance
• Has common case code inlined

• With multiple losses, Reno typically timeouts because it
does not see duplicate acknowledgements

11

11-07-06 Lecture 20: TCP Congestion Control 41

Reno

Time

Sequence No
X

X

XX

Now what? - timeout

Packets

Acks

11-07-06 Lecture 20: TCP Congestion Control 42

NewReno

• The ack that arrives after retransmission (partial
ack) could indicate that a second loss occurred

• When does NewReno timeout?
• When there are fewer than three dupacks for first loss
• When partial ack is lost

• How fast does it recover losses?
• One per RTT

11-07-06 Lecture 20: TCP Congestion Control 43

NewReno

Time

Sequence No
X

X

XX

Now what? – partial ack
recovery

Packets

Acks

11-07-06 Lecture 20: TCP Congestion Control 44

Changing Workloads

• New applications are changing the way TCP is used
• 1980’s Internet

• Telnet & FTP long lived flows
• Well behaved end hosts
• Homogenous end host capabilities
• Simple symmetric routing

• 2000’s Internet
• Web & more Web large number of short xfers
• Wild west – everyone is playing games to get bandwidth
• Cell phones and toasters on the Internet
• Policy routing

12

11-07-06 Lecture 20: TCP Congestion Control 45

Short Transfers

• Fast retransmission needs at least a window of 4
packets
• To detect reordering

• Short transfer performance is limited by slow start
RTT

11-07-06 Lecture 20: TCP Congestion Control 46

Short Transfers

• Start with a larger initial window
• What is a safe value?

• TCP already burst 3 packets into network during slow
start

• Large initial window = min (4*MSS, max (2*MSS, 4380
bytes)) [rfc2414]

• Not a standard yet
• Enables fast retransmission
• Only used in initial slow start not in any subsequent

slow start

11-07-06 Lecture 20: TCP Congestion Control 47

Well Behaved vs. Wild West

• How to ensure hosts/applications do proper
congestion control?

• Who can we trust?
• Only routers that we control
• Can we ask routers to keep track of each flow

• Per flow information at routers tends to be expensive
• Fair-queuing later in the semester

11-07-06 Lecture 20: TCP Congestion Control 48

TCP Fairness Issues

• Multiple TCP flows sharing the same bottleneck
link do not necessarily get the same bandwidth.
• Factors such as roundtrip time, small differences in

timeouts, and start time, … affect how bandwidth is
shared

• The bandwidth ratio typically does stabilize
• Users can grab more bandwidth by using parallel

flows.
• Each flow gets a share of the bandwidth to the user

gets more bandwidth than users who use only a single
flow

13

11-07-06 Lecture 20: TCP Congestion Control 49

TCP Friendliness

• What does it mean to be TCP friendly?
• TCP is not going away
• Any new congestion control must compete with TCP flows

• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair share, or it will

never become popular

• How is this quantified/shown?
• Has evolved into evaluating loss/throughput behavior
• If it shows 1/sqrt(p) behavior it is ok
• But is this really true?

11-07-06 Lecture 20: TCP Congestion Control 50

Overview

• TCP variants

• TCP modeling

• TCP details

11-07-06 Lecture 20: TCP Congestion Control 51

TCP Modeling

• Given the congestion behavior of TCP can we
predict what type of performance we should get?

• What are the important factors
• Loss rate: Affects how often window is reduced
• RTT: Affects increase rate and relates BW to window
• RTO: Affects performance during loss recovery
• MSS: Affects increase rate

11-07-06 Lecture 20: TCP Congestion Control 52

Overall TCP Behavior

Time

Window

• Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

• Packets transferred = area under curve

14

11-07-06 Lecture 20: TCP Congestion Control 53

Transmission Rate

• What is area under curve?
• W = pkts/RTT, T = RTTs
• A = avg window * time = ¾

W * T
• What was bandwidth?

• BW = A / T = ¾ W
• In packets per RTT

• Need to convert to bytes per
second

• BW = ¾ W * MSS / RTT

• What is W?
• Depends on loss rate

Time

W

W/2

11-07-06 Lecture 20: TCP Congestion Control 54

Simple TCP Model

• Some additional assumptions
• Fixed RTT
• No delayed ACKs

• In steady state, TCP losses packet each time
window reaches W packets
• Window drops to W/2 packets
• Each RTT window increases by 1 packet W/2 * RTT

before next loss

11-07-06 Lecture 20: TCP Congestion Control 55

Simple Loss Model

• What was the loss rate?
• Packets transferred = (¾ W/RTT) * (W/2 * RTT) = 3W2/8
• 1 packet lost loss rate = p = 8/3W2

•

• BW = ¾ * W * MSS / RTT

•

•

3
2 pRTT

MSSBW
×

=

p
W

3
8

=

pp
W

2
3

3
4

3
8

×==

11-07-06 Lecture 20: TCP Congestion Control 56

Fairness

• BW proportional to 1/RTT?
• Do flows sharing a bottleneck get the same

bandwidth?
• NO!

• TCP is RTT fair
• If flows share a bottleneck and have the same RTTs

then they get same bandwidth
• Otherwise, in inverse proportion to the RTT

15

11-07-06 Lecture 20: TCP Congestion Control 57

Overview

• TCP variants

• TCP modeling

• TCP details

11-07-06 Lecture 20: TCP Congestion Control 58

Delayed ACKS

• Problem:
• In request/response programs, you send separate ACK

and Data packets for each transaction
• Solution:

• Don’t ACK data immediately
• Wait 200ms (must be less than 500ms – why?)
• Must ACK every other packet
• Must not delay duplicate ACKs

11-07-06 Lecture 20: TCP Congestion Control 59

TCP ACK Generation [RFC 1122, RFC 2581]

Event

In-order segment arrival,
No gaps,
Everything else already ACKed

In-order segment arrival,
No gaps,
One delayed ACK pending

Out-of-order segment arrival
Higher-than-expect seq. #
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single
cumulative ACK

Send duplicate ACK, indicating seq. #
of next expected byte

Immediate ACK

11-07-06 Lecture 20: TCP Congestion Control 60

Delayed Ack Impact

• TCP congestion control triggered by acks
• If receive half as many acks window grows half as

fast
• Slow start with window = 1

• Will trigger delayed ack timer
• First exchange will take at least 200ms
• Start with > 1 initial window

• Bug in BSD, now a “feature”/standard

16

11-07-06 Lecture 20: TCP Congestion Control 61

Nagel’s Algorithm

• Small packet problem:
• Don’t want to send a 41 byte packet for each keystroke
• How long to wait for more data?

• Solution:
• Allow only one outstanding small (not full sized)

segment that has not yet been acknowledged
• Can be disabled for interactive applications

11-07-06 Lecture 20: TCP Congestion Control 62

Large Windows

• Delay-bandwidth product for 100ms delay
• 1.5Mbps: 18KB
• 10Mbps: 122KB
• 45Mbps: 549KB
• 100Mbps: 1.2MB
• 622Mbps: 7.4MB
• 1.2Gbps: 14.8MB

• Why is this a problem?
• 10Mbps > max 16bit window

• Scaling factor on advertised window
• Specifies how many bits window must be shifted to the left
• Scaling factor exchanged during connection setup

11-07-06 Lecture 20: TCP Congestion Control 63

Window Scaling:
Example Use of Options
• “Large window” option (RFC

1323)
• Negotiated by the hosts during

connection establishment
• Option 3 specifies the number

of bits by which to shift the
value in the 16 bit window field

• Independently set for the two
transmit directions

• The scaling factor specifies bit
shift of the window field in the
TCP header
• Scaling value of 2 translates

into a factor of 4
• Old TCP implementations will

simply ignore the option
• Definition of an option

TCP syn

SW? 3

TCP syn,ack

SW yes 3
SW? 2

TCP ack

SW yes 2

11-07-06 Lecture 20: TCP Congestion Control 64

Maximum Segment Size (MSS)

• Problem: what packet size should a connection
use?

• Exchanged at connection setup
• Uses a TCP option
• Typically pick MTU of local link

• What all does this effect?
• Efficiency
• Congestion control
• Retransmission

• Path MTU discovery
• Why should MTU match MSS?

17

11-07-06 Lecture 20: TCP Congestion Control 65

Silly Window Syndrome

• Problem: (Clark, 1982)
• If receiver advertises small increases in the receive

window then the sender may waste time sending
lots of small packets

• Solution
• Receiver must not advertise small window increases
• Increase window by min(MSS,RecvBuffer/2)

11-07-06 Lecture 20: TCP Congestion Control 66

Protection From Wraparound

• Wraparound time vs. Link speed
• 1.5Mbps: 6.4 hours
• 10Mbps: 57 minutes
• 45Mbps: 13 minutes
• 100Mbps: 6 minutes
• 622Mbps: 55 seconds
• 1.2Gbps: 28 seconds

• Why is this a problem?
• 55seconds < MSL!

• Use timestamp to distinguish sequence number
wraparound

