i‘ 15-441 Computer Networking

Lecture 20 — TCP Performance

Outline

N

» TCP congestion avoidance

* TCP slow start

« TCP modeling

11-07-06 Lecture 20: TCP Congestion Control

Additive Increase/Decrease “

+ Both X, and X,

increase/ decrease

by the same amount Faimess Line
over time T
» Additive increase
. . User 2's
improves fairness and | ailocation T,

Xz

additive decrease
reduces fairness

Efficiency Line

User 1's Allocation x,

11-07-06 Lecture 20: TCP Congestion Control 3

Muliplicative Increase/Decrease

"N

* Both X, and X,

increase by the
same factor over
time

User 2's

» Extension from Allocation
origin — constant *
fairness

Faimess Line

Efficiency Line

User 1's Allocation x,

11-07-06 Lecture 20: TCP Congestion Control

What is the Right Choice? N

* Constraints limit
US to AIMD Fairness Line

* Improves or
keeps fairness
User 2's
constant at Allocation |
X2
each step
* AIMD moves
towards optimal
point

Efficiency Line

User 1's Allocation x,

11-07-06 Lecture 20: TCP Congestion Control 5

TCP Congestion Control l‘

» Changes to TCP motivated by ARPANET
congestion collapse
 Basic principles
* AIMD
» Packet conservation
* Reaching steady state quickly
» ACK clocking

11-07-06 Lecture 20: TCP Congestion Control 6

AIMD “

 Distributed, fair and efficient

» Packet loss is seen as sign of congestion and results in a
multiplicative rate decrease
» Factor of 2

» TCP periodically probes for available bandwidth by
increasing its rate

Rate

Time
11-07-06 Lecture 20: TCP Congestion Control

Implementation Issue “

» Operating system timers are very coarse — how to pace
packets out smoothly?
* Implemented using a congestion window that limits how
much data can be in the network.
» TCP also keeps track of how much data is in transit
+ Data can only be sent when the amount of outstanding
data is less than the congestion window.
* The amount of outstanding data is increased on a “send” and
decreased on “ack”
+ (last sent — last acked) < congestion window
» Window limited by both congestion and buffering
» Sender’'s maximum window = Min (advertised window, cwnd)

11-07-06 Lecture 20: TCP Congestion Control 8

"

Congestion Avoidance

* Ifloss occurs when cwnd = W
* Network can handle 0.5W ~ W segments
» Set cwnd to 0.5W (multiplicative decrease)

* Upon receiving ACK

* Increase cwnd by (1 packet)/cwnd
* What is 1 packet? - 1 MSS worth of bytes
 After cwnd packets have passed by - approximately increase

of 1 MSS
* Implements AIMD

Congestion Avoidance Sequence Plot l‘

| |
| |
]
]
|]
]
|]
]
L
|]
|] o
] o
] o
= e
°
Sequence No B e
o
L) °
|] o
] =)
u =}
L] o
|] o
] o
L] o
a o
°
o
o
H
o
M Packets °
@ Acks
Time
10

Lecture 20: TCP Congestion Control

Lecture 20: TCP Congestion Control

11-07-06

11-07-06

Congestion Avoidance Behavior “

Congestion
Window
a

! —
Cut)\ . Time
Packet loss c i Grabbing
+ retransmit 0”.9‘35 lon back
Window Bandwidth
and Rate

11-07-06 Lecture 20: TCP Congestion Control

Packet Conservation

"N

* At equilibrium, inject packet into network only

when one is removed
« Sliding window and not rate controlled
 But still need to avoid sending burst of packets >
would overflow links
» Need to carefully pace out packets
* Helps provide stability
* Need to eliminate spurious retransmissions

» Accurate RTO estimation
* Better loss recovery techniques (e.g. fast retransmit)

11-07-06 Lecture 20: TCP Congestion Control

TCP Packet Pacing i‘.

» Congestion window helps to “pace” the transmission of
data packets
* In steady state, a packet is sent when an ack is received
+ Data transmission remains smooth, once it is smooth
+ Self-clocking behavior

P DU
PRI
[l e m— | P,
—_
Sender Receiver
-
A,] A
— A, —
11-07-06 Lecture 20: TCP Congestion Control 13

How to Change Window l‘

* When a loss occurs have W packets outstanding

* New cwnd = 0.5 * cwnd
» How to get to new state without losing ack clocking?

11-07-06 Lecture 20: TCP Congestion Control

Fast Recovery “

» Each duplicate ack notifies sender that single
packet has cleared network
* When < cwnd packets are outstanding
+ Allow new packets out with each new duplicate
acknowledgement
» Behavior
+ Sender is idle for some time — waiting for %2 cwnd worth
of dupacks

« Transmits at original rate after wait
 Ack clocking rate is same as before loss

11-07-06 Lecture 20: TCP Congestion Control

Fast Recovery “

EmEmEm
©00009p

/6'

Sent for each dupack after
W)/2 dupacks arrive

Sequence No

L]
[eelecoecel

oooollll-lx
©000000

M Packets
©Acks

Time

11-07-06 Lecture 20: TCP Congestion Control

Outline “

» TCP congestion avoidance
* TCP slow start

» TCP modeling

11-07-06 Lecture 20: TCP Congestion Control 17

Congestion Avoidance Behavior l‘

Congestion
Window
A

! T
Cut \ : Time
Packet loss c i Grabbing
+ retransmit on'gz(ejs ion back
Window Bandwidth
and Rate
11-07-06 Lecture 20: TCP Congestion Control 18

Reaching Steady State “

* Doing AIMD is fine in steady state but slow...
* How does TCP know what is a good initial rate to
start with?

» Should work both for a CDPD (10s of Kbps or less) and
for supercomputer links (10 Gbps and growing)

* Quick initial phase to help get up to speed (slow
start)

11-07-06 Lecture 20: TCP Congestion Control 19

Slow Start Packet Pacing “

* How do we get this

clocking behavior to start?

* Initialize cwnd =1

» Upon receipt of every ack, A
cwnd = cwnd + 1

» Implications

» Window actually increases to
W in RTT * log,(W)

» Can overshoot window and
cause packet loss

11-07-06 Lecture 20: TCP Congestion Control 20

Slow Start Example

"

One RTT
OR
i
One pkt time
1R @
2R @ ©)
e
3R @_6& ® @
(8][10[12][14]
(9 M1 11315]
11-07-06 Lecture 20: TCP Congestion Control 21

Slow Start Sequence Plot

N

]
=
[
=
u
=
[
=
]
[°
u o
Sequence No H °
L] °
u o
] °
L] °
u °
u o
L] °
] °
u o
= °
= o
Ml Packets
Acks -
© Time
11-07-06 Lecture 20: TCP Congestion Control 22

Return to Slow Start

L

* If packet is lost we lose our self clocking as well
* Need to implement slow-start and congestion

avoidance together

* When retransmission occurs set ssthresh to 0.5w

* If cwnd < ssthresh, use slow start
+ Else use congestion avoidance

11-07-06

Lecture 20: TCP Congestion Control

23

TCP Saw Tooth Behavior

"N

Congestion .
Window Timeouts
A may still
occur
I \6
iti lowstart Fast
Initial)
Slowstart to pace Retransmit
packets and Recovery

11-07-06

Lecture 20: TCP Congestion Control

24

Outline

"

» TCP congestion avoidance

 TCP slow start

« TCP modeling

11-07-06 Lecture 20: TCP Congestion Control

25

TCP Performance l‘

e Can TCP saturate a link?

» Congestion control
¢ Increase utilization until... link becomes congested
» React by decreasing window by 50%
* Window is proportional to rate * RTT
* Doesn’t this mean that the network oscillates
between 50 and 100% utilization?
» Average utilization = 75%7?7?
* No...this is *not* right!

11-07-06 Lecture 20: TCP Congestion Control 26

TCP Congestion Control

L

Rule for adjusting W
Only W packets + Ifan ACK is received:
may be outstanding + If a packet is lost:

Source [T]]

Window size

= =

E]
£

N

W «— W+1/W
W «— W/2

Dest

A

t

11-07-06 Lecture 20: TCP Congestion Control

27

Single TCP Flow N

W=1

util = 0%

time

11-07-06 Lecture 20: TCP Congestion Control 28

Summary Unbuffered Link i‘.

W Minimum window

\/\/\/\ & forfull utilization

» The router can't fully utilize the link
« If the window is too small, link is not full
« If the link is full, next window increase causes drop
« With no buffer it still achieves 75% utilization

11-07-06 Lecture 20: TCP Congestion Control 29

TCP Performance l‘

* In the real world, router queues play important
role
» Window is proportional to rate * RTT
» But, RTT changes as well the window

* Window to fill links = propagation RTT * bottleneck
bandwidth

« If window is larger, packets sit in queue on bottleneck link

11-07-06 Lecture 20: TCP Congestion Control 30

TCP Performance “

* If we have a large router queue - can get 100%
utilization
» But, router queues can cause large delays

» How big does the queue need to be?

* Windows vary from W > W/2
* Must make sure that link is always full
« W/2>RTT *BW
« W=RTT *BW + Qsize
* Therefore, Qsize > RTT * BW
* Ensures 100% utilization
* Delay?
» Varies between RTT and 2 * RTT

11-07-06 Lecture 20: TCP Congestion Control 31

Single TCP Flow N
Router with large enough buffers for full link utilization

Y- !

util = 0%

time

11-07-06 Lecture 20: TCP Congestion Control 32

Summary Buffered Link

"

W

P
Buffer
!

t

« With sufficient buffering we achieve full link utilization
* The window is always above the critical threshold
« Buffer absorbs changes in window size
« Buffer Size = Height of TCP Sawtooth
* Minimum buffer size needed is 2T*C
« This is the origin of the rule-of-thumb

11-07-06 Lecture 20: TCP Congestion Control

Minimum window

& for full utilization

33

TCP (Summary)

N

General loss recovery

» Stop and wait

» Selective repeat

TCP sliding window flow control
TCP state machine

TCP loss recovery

* Timeout-based
* RTT estimation

» Fast retransmit
+ Selective acknowledgements

11-07-06 Lecture 20: TCP Congestion Control

TCP (Summary)

L

» Congestion collapse
+ Definition & causes
» Congestion control
« Why AIMD?
+ Slow start & congestion avoidance modes
* ACK clocking

» Packet conservation

* TCP performance modeling

* How does TCP fully utilize a link?
* Role of router buffers

11-07-06 Lecture 20: TCP Congestion Control

35

N EXTRA SLIDES

The rest of the slides are FYI

TCP Variations

"

» Tahoe, Reno, NewReno, Vegas

+ TCP Tahoe (distributed with 4.3BSD Unix)
+ Original implementation of Van Jacobson’s

mechanisms (VJ paper)
* Includes:

 Slow start

» Congestion avoidance

* Fast retransmit

Multiple Losses

N

. . Now what?

EEXEEEEE N

— Retransmission

L}
«— Dupli Ack
Sequence No o uplicate Acks

cooomEEEEEE})X
©o0o0o0000

ocommmEE

omm

M Packets
@ Acks

Time

11-07-06 Lecture 20: TCP Congestion Control

11-07-06 Lecture 20: TCP Congestion Control 37
L}
L}
L}]
|]
K .
[] °
|} L}
1’4 =
L} (<]
L}
1'¢ n
L} O 00O
Sequence No H °
L} (<]
L} (<]
L} (<]
L} (<]
L] (=}
] (<]
L] (=}
] (<]
L} o
L} o
L} o
Ml Packets
Acks -
© Time
11-07-06 Lecture 20: TCP Congestion Control 39

TCP Reno (1990)

"N

* All mechanisms in Tahoe
+ Addition of fast-recovery
» Opening up congestion window after fast retransmit
» Delayed acks
* Header prediction
» Implementation designed to improve performance
» Has common case code inlined

+ With multiple losses, Reno typically timeouts because it

does not see duplicate acknowledgements

11-07-06 Lecture 20: TCP Congestion Control

40

10

Reno

"

NewReno l‘

* The ack that arrives after retransmission (partial
ack) could indicate that a second loss occurred
* When does NewReno timeout?
* When there are fewer than three dupacks for first loss
* When partial ack is lost
* How fast does it recover losses?
* One per RTT

11-07-06 Lecture 20: TCP Congestion Control 42

|]
L}
|]
= |]
? ° Now what? - timeout
3¢ =
|] (<] 0000
Sequence No = °
|] (<]
L} o
|] (<]
L} o
|] (<]
L] o
|] (<]
|] (<]
|] (<]
|] [
|] [
(<]
M Packets
OAcks Time
11-07-06 Lecture 20: TCP Congestion Control 41
NewReno i\.
|]
|]
|}
|]
§ [o
|] o
)
1’4 =
. ® Now what? — partial ack
X = recovery
|] (<] 0000
Sequence No m °
|] (<]
|] (<]
|] (<]
|] (<]
|] (<]
L] (=}
|] (<]
L] (=}
|] (<]
L} o
|] [
o
Wl Packets
©Acks Time

11-07-06

Lecture 20: TCP Congestion Control

43

Changing Workloads “

* New applications are changing the way TCP is used

* 1980’s Internet
* Telnet & FTP - long lived flows
* Well behaved end hosts
» Homogenous end host capabilities
» Simple symmetric routing
+ 2000’s Internet
* Web & more Web - large number of short xfers
» Wild west — everyone is playing games to get bandwidth
» Cell phones and toasters on the Internet
» Policy routing

11-07-06 Lecture 20: TCP Congestion Control 44

11

Short Transfers i‘.

e Fast retransmission needs at least a window of 4
packets
» To detect reordering

» Short transfer performance is limited by slow start
2> RTT

11-07-06 Lecture 20: TCP Congestion Control 45

Short Transfers l‘

« Start with a larger initial window

 What is a safe value?

» TCP already burst 3 packets into network during slow
start
* Large initial window = min (4*MSS, max (2*MSS, 4380
bytes)) [rfc2414]
* Not a standard yet

* Enables fast retransmission

* Only used in initial slow start not in any subsequent
slow start

11-07-06 Lecture 20: TCP Congestion Control 46

Well Behaved vs. Wild West N

* How to ensure hosts/applications do proper
congestion control?

 Who can we trust?

* Only routers that we control

» Can we ask routers to keep track of each flow
» Per flow information at routers tends to be expensive
 Fair-queuing later in the semester

11-07-06 Lecture 20: TCP Congestion Control 47

TCP Fairness Issues “

» Multiple TCP flows sharing the same bottleneck
link do not necessarily get the same bandwidth.

» Factors such as roundtrip time, small differences in
timeouts, and start time, ... affect how bandwidth is
shared

» The bandwidth ratio typically does stabilize
* Users can grab more bandwidth by using parallel
flows.

« Each flow gets a share of the bandwidth to the user
gets more bandwidth than users who use only a single
flow

11-07-06 Lecture 20: TCP Congestion Control 48

12

TCP Friendliness i‘.

* What does it mean to be TCP friendly?
* TCP is not going away
» Any new congestion control must compete with TCP flows
+ Should not clobber TCP flows and grab bulk of link

+ Should also be able to hold its own, i.e. grab its fair share, or it will
never become popular

* How is this quantified/shown?
+ Has evolved into evaluating loss/throughput behavior
« Ifit shows 1/sqrt(p) behavior it is ok
* But s this really true?

11-07-06 Lecture 20: TCP Congestion Control 49

Overview l‘

* TCP variants

* TCP modeling

* TCP details

11-07-06 Lecture 20: TCP Congestion Control 50

TCP Modeling “

» Given the congestion behavior of TCP can we
predict what type of performance we should get?
* What are the important factors
* Loss rate: Affects how often window is reduced
RTT: Affects increase rate and relates BW to window
RTO: Affects performance during loss recovery
MSS: Affects increase rate

11-07-06 Lecture 20: TCP Congestion Control 51

Overall TCP Behavior “

» Let’s concentrate on steady state behavior
with no timeouts and perfect loss recovery

» Packets transferred = area under curve

Window
WV : /‘
Time
11-07-06 Lecture 20: TCP Congestion Control 52

13

Transmission Rate i‘.

* What is area under curve?
« W =pkts/RTT, T=RTTs
* A =avg window * time = %
W*T
* What was bandwidth? W

BW=A/T=%W VW
* In packets per RTT
* Need to convert to bytes per Wi2

second
- BW=3%W*MSS/RTT

+ What is W? Time
* Depends on loss rate

11-07-06 Lecture 20: TCP Congestion Control 53

Simple TCP Model l‘

* Some additional assumptions
* Fixed RTT
* No delayed ACKs
* In steady state, TCP losses packet each time
window reaches W packets
* Window drops to W/2 packets

» Each RTT window increases by 1 packet>W/2 * RTT
before next loss

11-07-06 Lecture 20: TCP Congestion Control 54

Simple Loss Model “

* What was the loss rate?
» Packets transferred = (34 W/RTT) * (W/2 * RTT) = 3W2/8
1 packet lost > loss rate = p = 8/3W?2

s BW=%*W*MSS/RTT

wo [8_4 [3
3p 3 \2p

Bw o MSS
RTT x2P4
11-07-06 Lecture 20: TCP Congestion Control 55

Fairness “

* BW proportional to 1/RTT?

» Do flows sharing a bottleneck get the same
bandwidth?
* NO!

* TCP is RTT fair

« If flows share a bottleneck and have the same RTTs
then they get same bandwidth

» Otherwise, in inverse proportion to the RTT

11-07-06 Lecture 20: TCP Congestion Control 56

14

Overview i‘.

 TCP variants

* TCP modeling

* TCP details

11-07-06 Lecture 20: TCP Congestion Control 57

Delayed ACKS l‘

* Problem:
* In request/response programs, you send separate ACK
and Data packets for each transaction
» Solution:
* Don’t ACK data immediately
* Wait 200ms (must be less than 500ms — why?)
* Must ACK every other packet
* Must not delay duplicate ACKs

11-07-06 Lecture 20: TCP Congestion Control 58

TCP ACK Generation [RFc 1122, RFC 2581] “

Event TCP Receiver action
In-order segment arrival, Delayed ACK. Wait up to 500ms
No gaps, for next segment. If no next segment,

Everything else already ACKed send ACK

In-order segment arrival, Immediately send single

No gaps, cumulative ACK

One delayed ACK pending

Out-of-order segment arrival Send duplicate ACK, indicating seq. #
Higher-than-expect seq. # of next expected byte

Gap detected

Arrival of segment that Immediate ACK
partially or completely fills gap

11-07-06 Lecture 20: TCP Congestion Control 59

Delayed Ack Impact “

» TCP congestion control triggered by acks
* If receive half as many acks - window grows half as
fast
» Slow start with window = 1
» Will trigger delayed ack timer
 First exchange will take at least 200ms

« Start with > 1 initial window
* Bug in BSD, now a “feature”/standard

11-07-06 Lecture 20: TCP Congestion Control 60

15

Nagel’s Algorithm i‘.

» Small packet problem:
» Don’t want to send a 41 byte packet for each keystroke
* How long to wait for more data?

+ Solution:

 Allow only one outstanding small (not full sized)
segment that has not yet been acknowledged

« Can be disabled for interactive applications

11-07-06 Lecture 20: TCP Congestion Control 61

Large Windows l‘

* Delay-bandwidth product for 100ms delay
* 1.5Mbps: 18KB
* 10Mbps: 122KB
« 45Mbps: 549KB
* 100Mbps: 1.2MB
* 622Mbps: 7.4MB
+ 1.2Gbps: 14.8MB
* Why is this a problem?
* 10Mbps > max 16bit window
+ Scaling factor on advertised window
» Specifies how many bits window must be shifted to the left
» Scaling factor exchanged during connection setup

11-07-06 Lecture 20: TCP Congestion Control 62

Window Scaling: “

Example Use of Options

» “Large window” option (RFC

1323)) TCP syn
* Negotiated by the hosts during

connection establishment

* Option 3 specifies the number
of bits by which to shift the \
value in the 16 bit window field
+ Independently set for the two M/
transmit directions
* The scaling factor specifies bit -
shift of the window field in the -
TCP header
. Scalin? value of 2 translates
into a factor of 4
* Old TCP implementations will
simply ignore the option
+ Definition of an option \
11-07-06 Lecture 20: TCP Congestion Control 63

Maximum Segment Size (MSS) “

* Problem: what packet size should a connection
use?
» Exchanged at connection setup
* Uses a TCP option
» Typically pick MTU of local link
* What all does this effect?
- Efficiency
» Congestion control
* Retransmission
* Path MTU discovery
* Why should MTU match MSS?

11-07-06 Lecture 20: TCP Congestion Control 64

16

Silly Window Syndrome i‘.

* Problem: (Clark, 1982)

« If receiver advertises small increases in the receive
window then the sender may waste time sending
lots of small packets

* Solution

» Receiver must not advertise small window increases

¢ Increase window by min(MSS,RecvBuffer/2)

11-07-06 Lecture 20: TCP Congestion Control 65

Protection From Wraparound l‘

* Wraparound time vs. Link speed
* 1.5Mbps: 6.4 hours
* 10Mbps: 57 minutes
* 45Mbps: 13 minutes
* 100Mbps: 6 minutes
* 622Mbps: 55 seconds
* 1.2Gbps: 28 seconds
* Why is this a problem?
» 55seconds < MSL!

» Use timestamp to distinguish sequence number
wraparound

11-07-06 Lecture 20: TCP Congestion Control 66

17

