i‘ 15-441 Computer Networking

Lecture 18 — More TCP & Congestion
Control

Good Ideas So Far... l‘,

* Flow control

¢ Sliding window (e.g., advertised windows)
* Loss recovery

¢ Timeouts

« Acknowledgement-driven recovery (selective repeat or cumulative
acknowledgement)

e Congestion control
¢ AIMD - fairness and efficiency

* How does TCP actually implement these?

10-31-2006 Lecture 18: TCP Details 2

Outline “

* THE SPOOKY PARTS of TCP

o 1fit doesn't scare you how ... it will on the Final!

 TCP connection setup/data transfer
. ‘_rlr\e Candy-exchange Protocel /TCP)

e TCP reliability
o How to recover your DEAD packets

e TCP congestion avoidance
* Aveiding the death-traps of overloaded routers

10-31-2006 Lecture 18: TCP Details 3

Sequence Number Space “.

e Each byte in byte stream is numbered.

« 32 bit value

¢ Wraps around

« Initial values selected at start up time
e TCP breaks up the byte stream into packets.

¢ Packet size is limited to the Maximum Segment Size
e Each packet has a sequence number.

< Indicates where it fits in the byte stream

13450 14950 16050 17550
| | | |
packet 8 packet 9 packet 10
10-31-2006 Lecture 18: TCP Details 4

Establishing Connection:
Three-Way handshake

"

« Each side notifies other of
starting sequence number it SYN: SeqC
will use for sending

* Why not simply chose 07?

* Must avoid overlap with earlier ACK: SeqC+1
incarnation SYN: SeqS
 Security issues
» Each side acknowledges ACK: SeqS+1

other’s sequence number
* SYN-ACK: Acknowledge
sequence number + 1
e Can combine second SYN
with first ACK

10-31-2006 Lecture 18: TCP Details

Client

Server

TCP Connection Setup Example l‘.

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80: S
4019802004:4019802004(0) win 65535 <mss 1260,nop,nop,sackOoK>
(OF)

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123: S
3428951569:3428951569(0) ack 4019802005 win 5840 <mss
1460,nop,nop, sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80: . ack
3428951570 win 65535 (DF)

¢ Client SYN

* SeqC: Seq. #4019802004, window 65535, max. seg. 1260
¢ Server SYN-ACK+SYN

* Receive: #4019802005 (= SeqC+1)

* SegS: Seq. #3428951569, window 5840, max. seg. 1460
¢ Client SYN-ACK

* Receive: #3428951570 (= SeqS+1)
10-31-2006 Lecture 18: TCP Details 6

TCP State Diagram: Connection Setup

L

Client
’mu active OPEN
Server create TCB
passive OPEN CLOSE Snd SYN
create TCB delete TCB
|uisTen | _CLOSE _
delete TCB
rcv SYN SEND
snd SYN ACK snd SYN
SYN rev SYN YN
RCVD snd ACK SENT
rev ACK of SYN Rov SYN, ACK
Snd ACK
CLOSE :
Send FIN ESTAB
10-31-2006 Lecture 18: TCP Details !

Tearing Down Connection “.

« Either side can initiate tear
down A B
» Send FIN signal FIN, SeqA

* “I'm not going to send any more
data” ACK, SeqA+1

¢ Other side can continue

sending data ACK\‘
» Must continue to acknowledge

e Acknowledging FIN

w‘

« Half open connection

» Acknowledge last sequence
number + 1

10-31-2006 Lecture 18: TCP Details 8

TCP Connection Teardown Example

1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

1909787690 win 65434 (DF)

"

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616: F

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474: F

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616: . ack

¢ Session

« Echo client on 128.2.222.198, server on 128.2.210.194
¢ Client FIN

* SeqC: 1489294581
¢ Server ACK + FIN

e Ack: 1489294582 (= SeqC+1)

* SeqS: 1909787689

State Diagram: Connection Tear-down l‘,

CLOSE .
<end FIN Active Clost% ESTAB

CLOSE revFIN - passive Close
T send FIN send ACK [CLOSE
WAIT-1] | wAIT
rcv FIN
ACH snd ACK ELOSE
v FIN+ACK spd FIN
FIN WAIT- E‘ snd ACK [CLOSING (AST-ACK|
rev ACK of FIN rcv ACK pf FIN
[

T A ome - LCEOSED
rev FIN Timeout=2msl| \—‘
snd ACK delete TCB

10-31-2006 Lecture 18: TCP Details 10

¢ Client ACK
* Ack: 1909787690 (= SeqS+1)
10-31-2006 Lecture 18: TCP Details 9
Outline “

* TCP connection setup/data transfer

* TCP reliability

10-31-2006 Lecture 18: TCP Details

11

Reliability Challenges N

e Congestion related losses
» Variable packet delays

* What should the timeout be?
¢ Reordering of packets

» How to tell the difference between a delayed packet
and a lost one?

10-31-2006 Lecture 18: TCP Details 12

TCP = Go-Back-N Variant “

 Sliding window with cumulative acks
« Receiver can only return a single “ack” sequence number to the
sender.
« Acknowledges all bytes with a lower sequence number
 Starting point for retransmission
» Duplicate acks sent when out-of-order packet received
» But: sender only retransmits a single packet.
¢ Reason???
« Only one that it knows is lost
« Network is congested - shouldn’t overload it
 Error control is based on byte sequences, not packets.

¢ Retransmitted packet can be different from the original lost packet
- Why?

10-31-2006 Lecture 18: TCP Details 13

Round-trip Time Estimation l‘

Wait at least one RTT before retransmitting

Importance of accurate RTT estimators:

e Low RTT estimate
« unneeded retransmissions

* High RTT estimate
* poor throughput
RTT estimator must adapt to change in RTT
» But not too fast, or too slow!
Spurious timeouts

» “Conservation of packets” principle — never more than a
window worth of packets in flight

L]

10-31-2006 Lecture 18: TCP Details 14

Original TCP Round-trip Estimator “

e Round trip times 2
exponentially .
averaged:

e NewRTT =a (old RTT)
+ (1 - o) (new sample) !

» Recommended value o5 “
for a: 0.8 -0.9

« 0.875 for most TCP’s
e Retransmit timer setto (b * RTT), where b =2
< Every time timer expires, RTO exponentially backed-off
» Not good at preventing spurious timeouts
 Why?

10-31-2006 Lecture 18: TCP Details 15

RTT Sample Ambiguity “.

A B A B
oanal tansmyssion | Original ransmission
RTO I RTO
Sample Teltans . Sample I
RTT RTT

* Karn’s RTT Estimator

* If a segment has been retransmitted:
» Don’t count RTT sample on ACKs for this segment
» Keep backed off time-out for next packet
» Reuse RTT estimate only after one successful transmission
10-31-2006 Lecture 18: TCP Details 16

Jacobson’s Retransmission Timeout i‘.

» Key observation:
« At high loads round trip variance is high

e Solution:
* Base RTO on RTT and standard deviation
* RTO = RTT + 4 * rttvar

e new_rttvar = 3 * dev + (1- B) old_rttvar
» Dev = linear deviation

* Inappropriately named — actually smoothed linear
deviation

10-31-2006 Lecture 18: TCP Details 17

Timestamp Extension l‘

* Used to improve timeout mechanism by more
accurate measurement of RTT
* When sending a packet, insert current time into
option
» 4 bytes for time, 4 bytes for echo a received timestamp
¢ Receiver echoes timestamp in ACK
* Actually will echo whatever is in timestamp
¢ Removes retransmission ambiguity
e Can get RTT sample on any packet

10-31-2006 Lecture 18: TCP Details 18

Timer Granularity “

e Many TCP implementations set RTO in multiples
of 200,500,1000ms
e Why?
¢ Avoid spurious timeouts — RTTs can vary quickly due to
cross traffic

* Make timers interrupts efficient

* What happens for the first couple of packets?
¢ Pick a very conservative value (seconds)

10-31-2006 Lecture 18: TCP Details 19

Fast Retransmit “

* What are duplicate acks (dupacks)?
* Repeated acks for the same sequence
e When can duplicate acks occur?
e Loss
¢ Packet re-ordering
* Window update — advertisement of new flow control window
e Assume re-ordering is infrequent and not of large
magnitude
¢ Use receipt of 3 or more duplicate acks as indication of loss
< Don’t wait for timeout to retransmit packet

10-31-2006 Lecture 18: TCP Details 20

Fast Retransmit

"

TCP (Reno variant)

N

|]
.
|]
.
|]
.
|]
.
|]
M o
X . Retransmission
|] (<] 0000 « .
Sequence No " ° Duplicate Acks
|] (<]
L} o
|] (<]
L} o
|] (<]
L] o
|] (<]
|] (<]
|] (<]
|] [
|] [
|] (<]
M Packets
Acks -
© Time
10-31-2006 Lecture 18: TCP Details 21

» Basic problem is that cumulative acks provide little

information

» Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
« Implemented as a TCP option

* Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)

* When to retransmit?
 Still need to deal with reordering - wait for out of order

by 3pkts

10-31-2006

Lecture 18: TCP Details 23

|]
L}
L]
:
L]
x |]
. Now what? - timeout
14]
|] (<] 0000
Sequence No = °
|] (<]
L} o
|] (<]
L} o
|] (<]
L} o
|] (<]
|] (<]
|] (<]
|] <]
|] (<]
|] (<]
M Packets
Acks -
© Time
10-31-2006 Lecture 18: TCP Details 22
|]
L}
L}
L}
K s
n
|
» m
- Now what? — send
14 n retransmissions as soon
|] (<] 0000
Sequence No B o as detected
|] (<]
|] (<]
|] (<]
|] (<]
|] (<]
L} (=}
|] <]
L} (=}
|] (<]
L} [}
|] <]
L} o
M Packets
@ Acks -
Time
10-31-2006 Lecture 18: TCP Details 24

Performance Issues

"

e Timeout >> fast rexmit

* Need 3 dupacks/sacks

* Not great for small transfers
¢ Don’t have 3 packets outstanding

* What are real loss patterns like?

10-31-2006 Lecture 18: TCP Details

25

Important Lessons l‘.

e TCP state diagram - setup/teardown

* TCP timeout calculation = how is RTT estimated

e Modern TCP loss recovery
* Why are timeouts bad?
* How to avoid them? > e.g. fast retransmit

10-31-2006 Lecture 18: TCP Details 26

N EXTRA SLIDES

The rest of the slides are FYI

Detecting Half-open Connections “.

TCPA TCP B
1. (CRASH) (send 300, receive 100)
2. CLOSED ESTABLISHED
3. SYN-SENT - <SEQ=400><CTL=SYN> > ()
4. (1 < <SEQ=300><ACK=100><CTL=ACK> ¢« ESTABLISHED
5. SYN-SENT - <SEQ=100><CTL=RST> - (Abort!!)
6. SYN-SENT CLOSED
7. SYN-SENT - <SEQ=400><CTL=SYN> >

10-31-2006 Lecture 18: TCP Details 28

10-31-2006

v htmmeed

Lecture 18: TCP Details

29

