

Good Ideas So Far... Flow control Stop & wait Parallel stop & wait Sliding window Loss recovery Timeouts Acknowledgement-driven recovery (selective repeat or cumulative acknowledgement)

Lecture 17: TCP & Congestion Control

Lecture 17: TCP & Congestion Control

10-26-2006

Congestion Collapse

- Definition: Increase in network load results in decrease of useful work done
- Many possible causes
 - · Spurious retransmissions of packets still in flight
 - · Classical congestion collapse
 - · How can this happen with packet conservation
 - Solution: better timers and TCP congestion control
 - Undelivered packets
 - Packets consume resources and are dropped elsewhere in network
 - · Solution: congestion control for ALL traffic

10-26-2006

Lecture 17: TCP & Congestion Control

Congestion Control and Avoidance

- · A mechanism which:
 - · Uses network resources efficiently
 - Preserves fair network resource allocation
 - · Prevents or avoids collapse
- Congestion collapse is not just a theory
 - Has been frequently observed in many networks

10 26 2006

Lecture 17: TCP & Congestion Control

Approaches Towards Congestion Control

- Two broad approaches towards congestion control:
- End-end congestion control:
 - No explicit feedback from network
 - Congestion inferred from end-system observed loss, delay
 - · Approach taken by TCP
- Network-assisted congestion control:
 - Routers provide feedback to end systems
 - Single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)
 - Explicit rate sender should send at
 - Problem: makes routers complicated

10-26-2006

Lecture 17: TCP & Congestion Control

Example: TCP Congestion Control

- · Very simple mechanisms in network
 - · FIFO scheduling with shared buffer pool
 - · Feedback through packet drops
- TCP interprets packet drops as signs of congestion and slows down
 - This is an assumption: packet drops are not a sign of congestion in all networks
 - · E.g. wireless networks
- Periodically probes the network to check whether more bandwidth has become available.

10-26-2006

Lecture 17: TCP & Congestion Control

Outline

- TCP flow control
- Congestion sources and collapse
- Congestion control basics

10.26.200

Lecture 17: TCP & Congestion Control

Objectives

- Simple router behavior
- Distributedness
- Efficiency: X = Σx_i(t)
- Fairness: (Σx_i)²/n(Σx_i²)
 - What are the important properties of this function?
- Convergence: control system must be stable

10 26 2006

Lecture 17: TCP & Congestion Control

Basic Control Model

- Reduce speed when congestion is perceived
 - How is congestion signaled?
 - Either mark or drop packets
 - · How much to reduce?
- Increase speed otherwise
 - Probe for available bandwidth how?

10-26-200

Lecture 17: TCP & Congestion Control

