Overview

- Last lecture
 - How does choice of address impact network architecture and scalability?
 - What do IP addresses look like?

- This lecture
 - Modern IP addresses
 - How to get an IP address?
 - What do IP packets look like?
 - How do routers work?

Outline

- CIDR IP addressing
- Forwarding examples
- IP Packet Format
IP Address Problem (1991)

- Address space depletion
 - In danger of running out of classes A and B
 - Why?
 - Class C too small for most domains
 - Very few class A – very careful about giving them out
 - Class B – greatest problem
- Class B sparsely populated
 - But people refuse to give it back
- Large forwarding tables
 - 2 Million possible class C groups

IP Address Utilization (’97)

http://www.caida.org/outreach/resources/learn/ipv4space/

Classless Inter-Domain Routing (CIDR) – RFC1338

- Allows arbitrary split between network & host part of address
 - Do not use classes to determine network ID
 - Use common part of address as network number
 - E.g., addresses 192.4.16 - 192.4.31 have the first 20 bits in common. Thus, we use these 20 bits as the network number \(192.4.16/20 \)
 - Enables more efficient usage of address space (and router tables) \(\rightarrow \) How?
 - Use single entry for range in forwarding tables
 - Combined forwarding entries when possible

CIDR Example

- Network is allocated 8 class C chunks, 200.10.0.0 to 200.10.7.255
 - Allocation uses 3 bits of class C space
 - Remaining 20 bits are network number, written as 201.10.0.0/21
 - Replaces 8 class C routing entries with 1 combined entry
 - Routing protocols carry prefix with destination network address
 - Longest prefix match for forwarding
IP Addresses: How to Get One?

Network (network portion):
- Get allocated portion of ISP’s address space:

 - ISP’s block: \(11001000\ 00010111\ 00010000\ 00000000\ 200.23.16.0/20\)
 - Organization 0: \(11001000\ 00010111\ 0001000\ 00000000\ 200.23.16.0/23\)
 - Organization 1: \(11001000\ 00010111\ 0001001\ 00000000\ 200.23.18.0/23\)
 - Organization 2: \(11001000\ 00010111\ 0001010\ 00000000\ 200.23.20.0/23\)
 - Organization 7: \(11001000\ 00010111\ 0001111\ 00000000\ 200.23.30.0/23\)

How does an ISP get block of addresses?
- From Regional Internet Registries (RIRs)
 - ARIN (North America, Southern Africa), APNIC (Asia-Pacific), RIPE (Europe, Northern Africa), LACNIC (South America)

How about a single host?
- Hard-coded by system admin in a file
 - Host broadcasts “DHCP discover” msg
 - DHCP server responds with “DHCP offer” msg
 - Host requests IP address: “DHCP request” msg
 - DHCP server sends address: “DHCP ack” msg

CIDR Illustration

Provider is given 201.10.0.0/21

CIDR Implications

- Longest prefix match!!

Provider 1

Provider 2
9-26-06 Lecture 9: IP Packets

Outline

- CIDR IP addressing
- Forwarding examples
- IP Packet Format

Host Routing Table Example

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Genmask</th>
<th>Iface</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.2.209.100</td>
<td>0.0.0.0</td>
<td>255.255.255.255</td>
<td>eth0</td>
</tr>
<tr>
<td>128.2.0.0</td>
<td>0.0.0.0</td>
<td>255.255.0.0</td>
<td>eth0</td>
</tr>
<tr>
<td>127.0.0.0</td>
<td>0.0.0.0</td>
<td>255.0.0.0</td>
<td>lo</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>128.2.254.36</td>
<td>0.0.0.0</td>
<td>eth0</td>
</tr>
</tbody>
</table>

- From “netstat –rn”
- Host 128.2.209.100 when plugged into CS ethernet
- Dest 128.2.209.100 → routing to same machine
- Dest 128.2.0.0 → other hosts on same ethernet
- Dest 127.0.0.0 → special loopback address
- Dest 0.0.0.0 → default route to rest of Internet
 - Main CS router: gigrouter.net.cs.cmu.edu (128.2.254.36)

Routing to the Network

- Packet to 10.1.1.3 arrives
- Path is R2 – R1 – H1 – H2

Routing Within the Subnet

- Packet to 10.1.1.3
- Matches 10.1.0.0/23

Routing table at R2

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>lo0</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>provider</td>
<td>10.1.16.1</td>
</tr>
<tr>
<td>10.1.8.0/24</td>
<td>10.1.8.1</td>
<td>10.1.8.1</td>
</tr>
<tr>
<td>10.1.2.0/23</td>
<td>10.1.2.1</td>
<td>10.1.2.1</td>
</tr>
<tr>
<td>10.1.0.0/23</td>
<td>10.1.2.2</td>
<td>10.1.2.1</td>
</tr>
</tbody>
</table>
Routing Within the Subnet

- Packet to 10.1.1.3
- Matches 10.1.1.1/31
 - Longest prefix match

Routing table at R1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>lo0</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.2.1</td>
<td>10.1.2.2</td>
</tr>
<tr>
<td>10.1.0.0/24</td>
<td>10.1.0.1</td>
<td>10.1.0.1</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>10.1.1.1</td>
<td>10.1.1.4</td>
</tr>
<tr>
<td>10.1.2.0/23</td>
<td>10.1.2.2</td>
<td>10.1.2.2</td>
</tr>
<tr>
<td>10.1.1.2/31</td>
<td>10.1.1.2</td>
<td>10.1.1.2</td>
</tr>
</tbody>
</table>

Routing table at R1

- Packet to 10.1.1.3
- Direct route
 - Longest prefix match

Routing table at H1

<table>
<thead>
<tr>
<th>Destination</th>
<th>Next Hop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>lo0</td>
</tr>
<tr>
<td>Default or 0/0</td>
<td>10.1.1.1</td>
<td>10.1.1.2</td>
</tr>
<tr>
<td>10.1.0.0/24</td>
<td>10.1.0.1</td>
<td>10.1.0.1</td>
</tr>
<tr>
<td>10.1.1.0/24</td>
<td>10.1.1.1</td>
<td>10.1.1.4</td>
</tr>
<tr>
<td>10.1.1.2/31</td>
<td>10.1.1.2</td>
<td>10.1.1.2</td>
</tr>
</tbody>
</table>

Aside: Interaction with Link Layer

- How does one find the Ethernet address of a IP host?
 - ARP
 - Broadcast search for IP address
 - E.g., “who-has 128.2.184.45 tell 128.2.206.138” sent to Ethernet broadcast (all FF address)
 - Destination responds (only to requester using unicast) with appropriate 48-bit Ethernet address
 - E.g. “reply 128.2.184.45 is-at 0:d0:bc:f2:18:58” sent to 0:c0:4f:d:ed:c6

Outline

- CIDR IP addressing
- Forwarding examples
- IP Packet Format
IP Service Model

- Low-level communication model provided by Internet
- Datagram
 - Each packet self-contained
 - All information needed to get to destination
 - No advance setup or connection maintenance
 - Analogous to letter or telegram

IPv4 Header Fields

- Version: IP Version
 - 4 for IPv4
- HLen: Header Length
 - 32-bit words (typically 5)
- TOS: Type of Service
 - Priority information
- Length: Packet Length
 - Bytes (including header)
- Header format can change with versions
 - First byte identifies version
- TTL: Time to live
 - Must be decremented at each router
 - Packets with TTL=0 are thrown away
 - Ensure packets exit the network
- Protocol
 - Demultiplexing to higher layer protocols
 - TCP = 6, ICMP = 1, UDP = 17...
- Header checksum
 - Ensures some degree of header integrity
 - Relatively weak – 16 bit
- Options
 - E.g. Source routing, record route, etc.
 - Performance issues
 - Poorly supported
- Source Address
 - 32-bit IP address of sender
- Destination Address
 - 32-bit IP address of destination
- Like the addresses on an envelope
- Globally unique identification of sender & receiver
IP Delivery Model

- **Best effort service**
 - Network will do its best to get packet to destination
- **Does NOT guarantee:**
 - Any maximum latency or even ultimate success
 - Sender will be informed if packet doesn’t make it
 - Packets will arrive in same order sent
 - Just one copy of packet will arrive
- **Implications**
 - Scales very well
 - Higher level protocols must make up for shortcomings
 - Reliably delivering ordered sequence of bytes → TCP
 - Some services not feasible
 - Latency or bandwidth guarantees

Reassembly

- **Where to do reassembly?**
 - End nodes or at routers?
- **End nodes**
 - Avoids unnecessary work where large packets are fragmented multiple times
 - If any fragment missing, delete entire packet
- **Dangerous to do at intermediate nodes**
 - How much buffer space required at routers?
 - What if routes in network change?
 - Multiple paths through network
 - All fragments only required to go through destination

Fragmentation

- **Every network has own Maximum Transmission Unit (MTU)**
 - Largest IP datagram it can carry within its own packet frame
 - E.g., Ethernet is 1500 bytes
 - Don’t know MTUs of all intermediate networks in advance
- **IP Solution**
 - When hit network with small MTU, fragment packets

Fragmentation Related Fields

- **Length**
 - Length of IP fragment
- **Identification**
 - To match up with other fragments
- **Flags**
 - Don’t fragment flag
 - More fragments flag
- **Fragment offset**
 - Where this fragment lies in entire IP datagram
 - Measured in 8 octet units (13 bit field)
IP Fragmentation Example #1

MTU = 4000

Length = 3820, M=0

IP Header

IP Data

IP Fragmentation Example #2

router

MTU = 2000

Length = 3820, M=0

IP Header

IP Data

IP Fragmentation Example #3

host

MTU = 1500

Length = 2000, M=1, Offset = 0

1480 bytes

IP Header

IP Data

IP Reassembly

- Fragments might arrive out-of-order
- Don’t know how much memory required until receive final fragment
- Some fragments may be duplicated
- Keep only one copy
- Some fragments may never arrive
- After a while, give up entire process
Fragmentation and Reassembly Concepts

- Demonstrates many Internet concepts
- Decentralized
 - Every network can choose MTU
- Connectionless
 - Each (fragment of) packet contains full routing information
 - Fragments can proceed independently and along different routes
- Best effort
 - Fail by dropping packet
 - Destination can give up on reassembly
 - No need to signal sender that failure occurred
- Complex endpoints and simple routers
 - Reassembly at endpoints

Fragmentation is Harmful

- Uses resources poorly
 - Forwarding costs per packet
 - Best if we can send large chunks of data
 - Worst case: packet just bigger than MTU
- Poor end-to-end performance
 - Loss of a fragment

Path MTU discovery protocol determines minimum MTU along route

- Uses ICMP error messages
- Common theme in system design
 - Assure correctness by implementing complete protocol
 - Optimize common cases to avoid full complexity

Internet Control Message Protocol (ICMP)

- Short messages used to send error & other control information
- Examples
 - Ping request / response
 - Can use to check whether remote host reachable
 - Destination unreachable
 - Indicates how packet got & why couldn’t go further
 - Flow control
 - Slow down packet delivery rate
 - Redirect
 - Suggest alternate routing path for future messages
 - Router solicitation / advertisement
 - Helps newly connected host discover local router
 - Timeout
 - Packet exceeded maximum hop limit

IP MTU Discovery with ICMP

- Typically send series of packets from one host to another
- Typically, all will follow same route
 - Routes remain stable for minutes at a time
- Makes sense to determine path MTU before sending real packets
- Operation
 - Send max-sized packet with “do not fragment” flag set
 - If encounters problem, ICMP message will be returned
 - “Destination unreachable: Fragmentation needed”
 - Usually indicates MTU encountered
IP MTU Discovery with ICMP

MTU = 4000
IP Packet

Length = 4000, Don’t Fragment

MTU = 1500

IP MTU Discovery with ICMP

MTU = 2000
IP Packet

Length = 2000, Don’t Fragment

MTU = 1500

IP MTU Discovery with ICMP

MTU = 4000
IP Packet

Length = 1500, Don’t Fragment

MTU = 1500

Important Concepts

• Base-level protocol (IP) provides minimal service level
 • Allows highly decentralized implementation
 • Each step involves determining next hop
 • Most of the work at the endpoints
• ICMP provides low-level error reporting
• IP forwarding → global addressing, alternatives, lookup tables
• IP addressing → hierarchical, CIDR
• IP service → best effort, simplicity of routers
• IP packets → header fields, fragmentation, ICMP

- When successful, no reply at IP level
 • “No news is good news”
 • Higher level protocol might have some form of acknowledgement
Next Lecture

- How do forwarding tables get built?
- Routing protocols
 - Distance vector routing
 - Link state routing

Hierarchical Addressing Details

- Flat → would need router table entry for every single host... way too big
- Hierarchy → much like phone system...

- Hierarchy
 - Address broken into segments of increasing specificity
 - 412 (Pittsburgh area) 268 (Oakland exchange) 8734 (Seshan's office)
 - Pennsylvania / Pittsburgh / Oakland / CMU / Seshan
 - Route to general region and then work toward specific destination
 - As people and organizations shift, only update affected routing tables

Hierarchical Addressing Details

- Uniform Hierarchy
 - Segment sizes same for everyone
 - 412 (Pittsburgh area) 268 (Oakland exchange) 8734 (Seshan's office)
 - System is more homogeneous and easier to control
 - Requires more centralized planning
- Nonuniform Hierarchy
 - Number & sizes of segments vary according to destination
 - Pennsylvania / Pittsburgh / Oakland / CMU / Seshan
 - Delaware / Smallville / Bob Jones
 - System is more heterogenous & decentralized
 - Allows more local autonomy

EXTRA SLIDES

The rest of the slides are FYI
CIDR

- Supernets
 - Assign adjacent net addresses to same org
- Classless routing (CIDR)
- How does this help routing table?
 - Combine forwarding table entries whenever all nodes with same prefix share same hop

Aggregation with CIDR

- Original Use: Aggregate Class C Addresses
 - One organization assigned contiguous range of class C’s
 - e.g., Microsoft given all addresses 207.46.192.X – 207.46.255.X
 - Specify as CIDR address 207.46.192.0/18
 - Represents $2^6 = 64$ class C networks
 - Use single entry in routing table
 - Just as if were single network address

Size of Complete Routing Table

- Source: www.cidr-report.org
 - Shows that CIDR has kept # table entries in check
 - Currently require 124,894 entries for a complete table
 - Only required by backbone routers

<table>
<thead>
<tr>
<th>32 bits</th>
<th>32 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>ver</td>
<td>header length</td>
</tr>
<tr>
<td>type of service</td>
<td>length</td>
</tr>
<tr>
<td>16-bit identifier</td>
<td>flags</td>
</tr>
<tr>
<td>time to live</td>
<td>fragment offset</td>
</tr>
<tr>
<td>Protocol</td>
<td>Header checksum</td>
</tr>
<tr>
<td>32 bit source IP address</td>
<td>32 bit destination IP address</td>
</tr>
<tr>
<td>Options (if any)</td>
<td>Padding (if any)</td>
</tr>
<tr>
<td>data</td>
<td>(variable length, typically a TCP or UDP segment)</td>
</tr>
</tbody>
</table>
ICMP: Internet Control Message Protocol

- Used by hosts, routers, gateways to communicate network-level information
- Error reporting: unreachable host, network, port, protocol
- Echo request/reply (used by ping)
- Network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
 - ICMP message: type, code plus first 8 bytes of IP datagram causing error

<table>
<thead>
<tr>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>echo reply (ping)</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>dest. network unreachable</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>dest host unreachable</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>dest protocol unreachable</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>dest port unreachable</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>dest network unknown</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>dest host unknown</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>source quench (congestion control - not used)</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>echo request (ping)</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>route advertisement</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>TTL expired</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>bad IP header</td>
</tr>
</tbody>
</table>

Outline

- Router Internals

Router Architecture Overview

Two key router functions:
- Run routing algorithms/protocol (RIP, OSPF, BGP)
 - Done by routing processor
- Switching datagrams from incoming to outgoing link
 - Common case handled by line cards

Router Physical Layout

Juniper T series
Cisco 12000

Crossbar
Linecards
Switch
Line Cards

- Often uses special purpose hardware (e.g. ASICs)
- Network interface cards
- Fast path (common-case) processing
 - Decrement TTL
 - Recompute checksum
 - Forward to next hop line card
 - Forwarding engine

Line Card: Input Port

Decentralized switching:
- Process common case (fast-path) packets
 - Decrement TTL, update checksum, forward packet
 - Given datagram dest., lookup output port using routing table in input port memory
 - Queue needed if datagrams arrive faster than forwarding rate into switch fabric

Physical layer:
- bit-level reception

Data link layer:
- e.g., Ethernet

Line Card: Output Port

- Queuing required when datagrams arrive from fabric faster than the line transmission rate

Buffering

- Suppose we have N inputs and M outputs
 - Multiple packets for same output → output contention
 - Switching fabric may force different inputs to wait → Switch contention
 - Solution – buffer packets when/where needed
 - What happens when these buffers fill up?
 - Packets are THROWN AWAY!! This is where packet loss comes from
Switch Buffering

- 3 types of switch buffering
 - Input buffering
 - Fabric slower than input ports combined → queuing may occur at input queues
 - Can avoid any input queuing by making switch speed = $N \times$ link speed
 - Output buffering
 - Buffering when arrival rate via switch exceeds output line speed
 - Internal buffering
 - Can have buffering inside switch fabric to deal with limitations of fabric

Input Port Queuing

- Which inputs are processed each slot — schedule?
- Head-of-the-Line (HOL) blocking: datagram at front of queue prevents others in queue from moving forward

Output Port Queuing

- Scheduling discipline chooses among queued datagrams for transmission
 - Can be simple (e.g., first-come first-serve) or more clever (e.g., weighted round robin)

Virtual Output Queuing

- Maintain per output buffer at input
- Solves head of line blocking problem
- Each of MxN input buffer places bid for output
- Challenge: map bids to schedule of interconnect transfers
Network Processor

- Runs routing protocol and downloads forwarding table to forwarding engines
- Performs “slow” path processing
 - ICMP error messages
 - IP option processing
 - Fragmentation
 - Packets destined to router

Three Types of Switching Fabrics

Switching Via a Memory

First generation routers → looked like PCs
- Packet copied by system’s (single) CPU
- Speed limited by memory bandwidth (2 bus crossings per datagram)

Modern routers
- Input port processor performs lookup, copy into memory
- Cisco Catalyst 8500

Switching Via a Bus

- Datagram from input port memory to output port memory via a shared bus
- Bus contention: switching speed limited by bus bandwidth
- 1 Gbps bus, Cisco 1900: sufficient speed for access and enterprise routers (not regional or backbone)
Switching Via an Interconnection Network

- Overcome bus bandwidth limitations
- Crossbar provides full NxN interconnect
 - Expensive
- Banyan networks & other interconnection nets initially developed to connect processors in multiprocessor
 - Typically less capable than complete crossbar
- Cisco 12000: switches Gbps through the interconnection network

Outline

- Route Lookup

How To Do Longest Prefix Match

- Traditional method – Patricia Tree
 - Arrange route entries into a series of bit tests
 - Worst case = 32 bit tests
 - Problem: memory speed is a bottleneck

Speeding up Prefix Match - Alternatives

- Content addressable memory (CAM)
 - Hardware based route lookup
 - Input = tag, output = value associated with tag
 - Requires exact match with tag
 - Multiple cycles (1 per prefix searched) with single CAM
 - Multiple CAMs (1 per prefix) searched in parallel
 - Ternary CAM
 - 0,1,don’t care values in tag match
 - Priority (i.e. longest prefix) by order of entries in CAM
Speeding up Prefix Match - Alternatives

- Route caches
 - Packet trains → group of packets belonging to same flow
 - Temporal locality
 - Many packets to same destination
- Other algorithms
 - Routing with a Clue [Bremer-Barr – Sigcomm 99]
 - Clue = prefix length matched at previous hop
 - Why is this useful?

Speeding up Prefix Match - Alternatives

- Cut prefix tree at 16/24/32 bit depth
 - Fill in prefix tree entries by creating extra entries
 - Entries contain output interface for route
 - Add special value to indicate that there are deeper tree entries
 - Only keep 24/32 bit cuts as needed
- Example cut prefix tree at 16 bit depth
 - Only 64K entries

Prefix Tree

Prefix Tree
Cut Prefix Tree

- Scaling issues
 - How would it handle IPv6
- Other possibilities
 - Why were the cuts done at 16/24/32 bits?

Where did they learn all that network stuff….

- It takes years of training at top institutes to become CMU faculty 😊