

Spanning Tree Protocol Overview Embed a tree that provides a single unique path to each destination: Elect a single bridge as a root bridge Each bridge calculates the distance of the shortest path to the root bridge Each LAN identifies a designated bridge, the bridge closest to the root. It will forward packets to the root. Each bridge determines a root port, which will be used to send packets to the root Identify the ports that form the spanning tree

Source Routing

- Advantages
 - Switches can be very simple and fast
- Disadvantages
 - Variable (unbounded) header size
 - Sources must know or discover topology (e.g., failures)
- Typical uses
 - Ad-hoc networks (DSR)
 - Machine room networks (Myrinet)

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

2

Global Addresses (IP)

- Each packet has destination address
- Each router has forwarding table of destination → next hop
 - At v and x: destination → east
 - At w and y: destination → south
 - At z: destination → north
- Distributed routing algorithm for calculating forwarding tables

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

Global Addresses

- Advantages
 - Stateless simple error recovery
- Disadvantages
 - Every switch knows about every destination
 - Potentially large tables
 - · All packets to destination take same route
 - Need routing protocol to fill table

9-21-06

Router Table Size

- One entry for every host on the Internet
 - 440M (7/06) entries, doubling every 2.5 years
- One entry for every LAN
 - Every host on LAN shares prefix
 - Still too many and growing quickly
- One entry for every organization
 - Every host in organization shares prefix
 - Requires careful address allocation

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

37

Addressing Considerations

- Hierarchical vs. flat
 - Pennsylvania / Pittsburgh / Oakland / CMU / Seshan

Srinivasan Seshan: 123-45-6789 vs. Srinivasan Seshan: (412)268-0000

- What information would routers need to route to Ethernet addresses?
 - Need hierarchical structure for designing scalable binding from interface name to route!
- What type of Hierarchy?
 - · How many levels?
 - Same hierarchy depth for everyone?
 - Same segment size for similar partition?

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

IP Addresses

- · Fixed length: 32 bits
- Initial classful structure (1981) (not relevant now!!!)
- Total IP address size: 4 billion
 - · Class A: 128 networks, 16M hosts
 - · Class B: 16K networks, 64K hosts
 - Class C: 2M networks, 256 hosts

High Order Bits 0 10 110	Format 7 bits of net, 24 bits of host 14 bits of net, 16 bits of host 21 bits of net, 8 bits of host	<u>Class</u> A B C

Lecture 8: Bridging/Addressing/Forwarding

IP Address Classes
(Some are Obsolete)

Network ID

8 16 24 32

Class A Network ID

Host ID

Class B 10

Class C 110

Class D 1110

Multicast Addresses

Class E 1111

Reserved for experiments

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

40

Original IP Route Lookup

- · Address would specify prefix for forwarding table
 - Simple lookup
- www.cmu.edu address 128.2.11.43
 - Class B address class + network is 128.2
 - Lookup 128.2 in forwarding table
 - Prefix part of address that really matters for routing
- · Forwarding table contains
 - · List of class+network entries
 - A few fixed prefix lengths (8/16/24)
- Large tables
 - · 2 Million class C networks

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

Subnet Addressing RFC917 (1984)

- · Class A & B networks too big
 - Very few LANs have close to 64K hosts
 - For electrical/LAN limitations, performance or administrative reasons
- Need simple way to get multiple "networks"
 - Use bridging, multiple IP networks or split up single network address ranges (subnet)
- CMU case study in RFC
 - Chose not to adopt concern that it would not be widely supported ©

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

42

Subnetting

- Add another layer to hierarchy
- · Variable length subnet masks
 - Could subnet a class B into several chunks

	Network	Host			
	Network	Subnet	Host		
	11111111111111111	1111111	0000000	Subnet Mask	
9-	9-21-06 Lecture 8: Bridging/Addressing/Forwarding				

Subnetting Example

- Assume an organization was assigned address 150.100
- Assume < 100 hosts per subnet
- How many host bits do we need?
 - Seven
- What is the network mask?
 - 11111111 11111111 11111111 10000000
 - 255.255.255.128

9-21-0

Aside: Interaction with Link Layer How does one find the Ethernet address of a IP host? ARP Broadcast search for IP address E.g., "who-has 128.2.184.45 tell 128.2.206.138" sent to Ethernet broadcast (all FF address) Destination responds (only to requester using unicast) with appropriate 48-bit Ethernet address E.g, "reply 128.2.184.45 is-at 0:d0:bc:f2:18:58" sent to 0:c0:4f:d:ed:c6 9-21-06 Lecture 8: Bridging/Addressing/Forwarding 46

Important Concepts

- Hierarchical addressing critical for scalable system
 - Don't require everyone to know everyone else
 - Reduces number of updates when something changes

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

Routing Through Single Network

- · Path Consists of Series of Hops
 - Source Router
 - Router Router (typically high-speed, point-to-point link)
 - · Router Destination
- Each Hop Uses Link-Layer Protocol
 - · Determine hop destination
 - · Based on destination
 - Send over local network
 - Put on header giving MAC address of intermediate router (or final destination)

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

How is IP Design Standardized?

- IETF
 - Voluntary organization
 - · Meeting every 4 months
 - · Working groups and email discussions
- "We reject kings, presidents, and voting; we believe in rough consensus and running code" (Dave Clark 1992)
 - Need 2 independent, interoperable implementations for standard

9-21-06

Addressing Considerations

- Fixed length or variable length?
- Issues:
 - Flexibility
 - Processing costs
 - Header size
- Engineering choice: IP uses fixed length addresses

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

Virtual Circuits/Tag Switching

- Connection setup phase
 - Use other means to route setup request
 - · Each router allocates flow ID on local link
 - Creates mapping of inbound flow ID/port to outbound flow ID/port
- Each packet carries connection ID
 - Sent from source with 1st hop connection ID
- Router processing
 - Lookup flow ID simple table lookup
 - Replace flow ID with outgoing flow ID
 - Forward to output port

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

54

Virtual Circuits Examples Packet Sender 1,5 + 3,7 2,1 1,5 + 3,7 2,1 1,5 + 3,7 Receiver 2,2 + 3,6 Packet Sender 1,5 + 3,7 2,1 1,5 + 3,7 2,1 1,5 + 3,7 2,1 1,5 + 3,7 2,1 1,5 + 3,7 2,1 1,5 + 3,7 2,1 1,7 + 4,2 1,5 + 3,7 2,1 1,7 + 4,2 1,5 + 3,7 2,1 1,7 + 4,2 1,5 + 3,7 2,1 1,7 + 4,2 1,5 + 3,7 2,1 1,7 + 4,2 1,8 + 3,6 Receiver 2,2 + 3,6

Virtual Circuits

- Advantages
 - More efficient lookup (simple table lookup)
 - More flexible (different path for each flow)
 - Can reserve bandwidth at connection setup
 - · Easier for hardware implementations
- Disadvantages
 - Still need to route connection setup request
 - More complex failure recovery must recreate connection state
- Typical uses
 - ATM combined with fix sized cells
 - MPLS tag switching for IP networks

9-21-06

Some Special IP Addresses

- 127.0.0.1: local host (a.k.a. the loopback address
- Host bits all set to 0: network address
- Host bits all set to 1: broadcast address

9-21-06 Lecture 8: Bridging/Addressing/Forwarding

Bridging/Addressing/Forwarding

Some People Have Too Much Time...

- Everything I needed to know about networks I learned from W Google video
 - Ethernet collision animation

AND.....

- Just to make sure...
 - Packets really can't catch fire. That is not why we have insulation on wires
 - 2. Don't answer "what happens after a collision" on the exam/HW with "the packets catch on fire!"

9-21-06

Lecture 8: Bridging/Addressing/Forwarding

70