
1

Lecture 4
Socket Programming

George Nychis
Carnegie Mellon University

15-441 Networking, Fall 2006
http://www.cs.cmu.edu/~srini/15-

441/F06/

2

Outline of Lecture

● Project 1 – Questions?
● Motivation for Sockets
● Introduction to Sockets
● Nitty Gritty of Sockets
● Break

» Find a project partner!

● Concurrent Connections
● Select
● Roundup

3

Last Time

● What is a network?

● Lets start simple...

» What is a motivation of a computer network?

» What do we use networks for?

» How do we share data?

4

Let's Share Data!

● Suppose we have a 5MB file ...

» How can we transfer it?

» What type of applications and services can we use?

» Where do these services run?

5

Where do these processes exist?

● Lets take a step back:

Application

Presentation

Session

Transport

Network

Data link

Physical1

2

3

4

5

6

7

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

6

IPC: Interprocess Communication

● Overall Goal: Interprocess communication
» So what is the problem?

● No problem when both processes on a single
machine...

● Network services such as FTP servers and
HTTP servers typically run on seperate
machines from the clients that access them

7

Back to the Application Layer

● Lets revisit this one more time... why a layered abstraction
again?

Application

Presentation

Session

Transport

Network

Data link

Physical1

2

3

4

5

6

7

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

8

Just pass it down...

● Author of an FTP server does not need to worry
about:

» How frames are formed
» How the data is routed through the network
» How reliability is ensured

● Author only needs a method of passing the
data down to the next layer

9

Lower Layers Need Info

● OK, we pass the data down... what else do the
lower layers need to know?

● Where does the data go?

● Once it gets there, where does it then go?
What process gets the data?

10

Identifying the Destination

Connection socket pair
(128.2.194.242:3479, 208.216.181.15:80)

HTTP Server
(port 80)

Client

Client socket address
128.2.194.242:3479

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

FTP Server
(port 21)

11

Why Should You Care?

● You've all read the project 1 description...
winking smiley face

● You're going to be writing an application level
service! (IRC server)

● You will need to do all of what we talked about:
» Pass messages
» Share data

● This is all done between the servers you write,
and clients we will use to test them on
seperate machines! (IPC)

12

Sockets

● Lucky for you, someone made it easy...

● Sockets!
» Set up the socket

– Where is the remote machine? (IP address)
– What service gets the data? (Port number)

» Send and Receive
– Designed to be simple, just like any other I/O in unix,

read and write to the socket like a file
– Send -> write()
– Receive <- read()

» Close the socket

13

Client / Server

● Socket setup depends on application

● Both client and server applications need to
request a socket descriptor

» Specify domain like IPv4 and then the type TCP/UDP

● Server
» Bind: assign a local address and port to the socket, like

“127.0.0.1” and “80”
» Listen: ready to accept incoming connections
» Accept: take the first incoming connection out of a queue

and get a new descriptor for communicating with it

● Client
» Connect: connect to a server in the listening state,

specified by address and port

14

Overview

Client /
Server
Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

open_listenfd

acceptconnect

open_clientfd

15

Step 1: Setup the Socket

● Both client and server applications need to
setup the socket (man socket)

» int socket(int domain, int type, int protocol);

● Domain:
» “AF_INET” -- IPv4

● Type:
» “SOCK_STREAM” -- TCP (Your IRC server)
» “SOCK_DGRAM” -- UDP (Routing Daemon -> Routing

Daemon)

● Protocol:
» “0”

● For example...
» int sock = socket(AF_INET, SOCK_STREAM, 0);

16

Step 2 (Server): Binding the Socket

● Only the server needs to bind (man bind)
» int bind(int sockfd, const struct sockaddr *my_addr, socklen_t

addrlen);

● sockfd:
» Whatever socket() returned!

● my_addr:
» For Internet addresses, must cast (struct sockaddr_in *) to

(struct sockaddr *)

struct sockaddr_in {
 short sin_family; // e.g. AF_INET
 unsigned short sin_port; // e.g. htons(3490)
 struct in_addr sin_addr; // see struct in_addr, below
 char sin_zero[8]; // zero this if you want to
};
struct in_addr {
 unsigned long s_addr; // load with inet_aton()
};

17

Step 2 (Server): Binding the Socket
... Continued

● addrlen:
» sizeof(your_sockaddr_in_struct)

● For example...
struct sockaddr_in saddr;
int sockfd;
unsigned short port = 80;

if((sockfd=socket(AF_INET, SOCK_STREAM, 0) < 0) { // from back a couple
slides

printf(“Error creating socket\n”);
...

}

memset(&saddr, '\0', sizeof(saddr)); // zero structure out
saddr.sin_family = AF_INET; // match the socket() call
saddr.sin_addr.s_addr = htonl(INADDR_ANY); // bind to any local address
saddr.sin_port = htons(port); // specify port to listen on

if((bind(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)) < 0) { // bind!
printf(“Error binding\n”);
...

}

18

Network Byte Ordering

● Wait wait... what was that “htons()/htonl()”
thing?

● Network Byte Ordering
» Network is big-endian, host may be big- or little-endian
» Functions work on 16-bit (short) and 32-bit (long) values
» htons() / htonl() : convert host byte order to network byte

order
» ntohs() / ntohl(): convert network byte order to host byte

order
» Use these to convert network addresses, ports, …

19

Step 3 (Server): Listen

● Now we have a socket descriptor and
address/port associated with the socket

● Lets listen in! (man listen)
» int listen(int sockfd, int backlog);

● sockfd:
» Again, whatever socket() returned

● backlog:
» Total number of hosts we want to queue

● Example...
» listen(sockfd, 5); // pass it sockfd, no more than a queue of

5

20

Step 4 (Server): Accept

● Server must accept incoming connections
(man 2 accept)

» int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen)

● sockfd:
» The usual culprit, socket() return

● addr:
» A pointer to a struct sockaddr_in, cast as (struct sockaddr *)

● addrlen:
» Pointer to an integer to store the returned size of addr, should

be initialized as original sizeof(addr);

● Example:
» int isock=accept(sockfd, (struct sockaddr_in *) &caddr, &clen);

21

Lets put the server together...

struct sockaddr_in saddr, caddr;
int sockfd, clen, isock;
unsigned short port = 80;

if((sockfd=socket(AF_INET, SOCK_STREAM, 0) < 0) { // from back a couple
slides

printf(“Error creating socket\n”);
...

}

memset(&saddr, '\0', sizeof(saddr)); // zero structure out
saddr.sin_family = AF_INET; // match the socket() call
saddr.sin_addr.s_addr = htonl(INADDR_ANY); // bind to any local address
saddr.sin_port = htons(port); // specify port to listen on

if((bind(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)) < 0) { // bind!
printf(“Error binding\n”);
...

}

if(listen(sockfd, 5) < 0) { // listen for incoming connections
printf(“Error listening\n”);
...

}

clen=sizeof(caddr)
if((isock=accept(sockfd, (struct sockaddr *) &caddr, &clen)) < 0) {// accept
one

printf(“Error accepting\n”);
...

}

22

What happened to the client?

● The last thing the client did was socket() !

● The client need not do bind, listen, and accept

● All the client does now is connect (man
connect)

» int connect(int sockfd, const struct sockaddr *saddr, socklen_t
addrlen);

● Example...
» connect(sockfd, (struct sockaddr *) &saddr, sizeof(saddr));

23

Piecing the Client Together

struct sockaddr_in saddr;
struct hostent *h;
int sockfd, connfd;
unsigned short port = 80;

if((sockfd=socket(AF_INET, SOCK_STREAM, 0) < 0) { // from back a couple slides
printf(“Error creating socket\n”);
...

}

if((h=gethostbyname(“www.slashdot.org”)) == NULL) { // Lookup the hostname
printf(“Unknown host\n”);
...

}

memset(&saddr, '\0', sizeof(saddr)); // zero structure out
saddr.sin_family = AF_INET; // match the socket() call
memcpy((char *) &saddr.sin_addr.s_addr, h->h_addr_list[0], h->h_length); // copy the
address
saddr.sin_port = htons(port); // specify port to connect to

if((connfd=connect(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)) < 0) { // connect!
printf(“Cannot connect\n”);
...

}

24

We're Connected!

● Great, server accepting connections, and
client connecting to servers.

● Now what? Lets send and receive data!
» read()
» write()

● Both functions are used by client and server:
» ssize_t read(int fd, void *buf, size_t len);
» ssize_t write(int fd, const void *buf, size_t len);

● Example...
» read(sockfd, buffer, sizeof(buffer));
» write(sockfd, “hey\n”, strlen(“hey\n”));

25

Finally, Close Up Shop

● Don't forget, like a file, you must close it (man
close)

» int close(int sockfd);

● That's it!

● Loop around the accept() on the server to
accept a new connection once one has
finished

● But what's wrong with this?

26

Server Flaw

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

Server blocks
waiting for
data from
Client 1

Taken from D. Murray, R. Bryant, and G. Langale 15-441/213 slides

27

Concurrent Servers

client 1 server client 2

call connect
call accept

ret connect
ret accept

call connect

call fgets

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

call accept
ret connect

ret accept call fgets

write

write

call read

end read
close

close

call read (don’t block)

call read

Taken from D. Murray, R. Bryant, and G. Langale 15-441/213 slides

28

Solutions to Concurrency

● Threads – first thing that comes to mind
» (+) Threads allow concurrency
» (+) Easier methodology
» (-) Threads increase design complexity (race conditions)
» (-) Concurrency slightly more complicated

● Select()
» (+) Select allows concurrency
» (+) Does not introduce race conditions
» (-) Default control flow is more complicated

● Nobody has won the battle... but...
.... you MUST you use select() !!

29

What Does Select Do?

● Allows you to monitor multiple file descriptors
(straight from the “man”!)

● Why is this helpful?
» accept() returns a new file descriptor for the incoming

connection

» set sockets to non-blocking... select does not specify how
much we can write

» “collect” incoming file descriptors and monitor all of them!

30

Setting Socket to Not Block

● Before we even get to use select, we need to
set all sockets to non-blocking

● Also need to allow reuse of the socket

int sock, opts=1;

sock = socket(...); // To give you an idea of where the new code goes

setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &opts, sizeof(opts));

if((opts = fcntl(sock, F_GETFL)) < 0) { // Get current options
printf(“Error...\n”);
...

}
opts = (opts | O_NONBLOCK); // Don't clobber your old settings
if(fcntl(sock, F_SETFL, opts) < 0) {

printf(“Error...\n”);
...

}

bind(...); // To again give you an idea where the new code goes

31

Select()

● int select(int maxfdp1, fd_set *readset, fd_set
*writeset, NULL, struct timeval *timeout);

● fd_set – bit vector with max FD_SETSIZE bits
» bit k is set to 1 if descriptor k is a member of the set

● readset – bit vector for read descriptors
● writeset – bit vector for write descriptors

● maxfdp1 – max file descriptor + 1

32

How does this change things?

// socket() call and non-blocking code is above this point

if((bind(sockfd, (struct sockaddr *) &saddr, sizeof(saddr)) < 0) { // bind!
printf(“Error binding\n”);
...

}

if(listen(sockfd, 5) < 0) { // listen for incoming connections
printf(“Error listening\n”);
...

}

clen=sizeof(caddr);

// Setup pool.read_set with an FD_ZERO() and FD_SET() for
// your server socket file descriptor. (whatever socket() returned)

while(1) {
pool.ready_set = &pool.read_set; // Save the current state
pool.nready = select(pool.maxfd+1, &pool.ready_set, &pool.write_set, NULL, NULL);

if(FD_ISSET(sockfd, &pool.ready_set)) { // Check if there is an incoming conn
isock=accept(sockfd, (struct sockaddr *) &caddr, &clen); // accept it
add_client(isock, &pool); // add the client by the incoming socket fd

}

check_clients(&pool); // check if any data needs to be sent/received from clients
}

...

close(sockfd);

33

How to Set Your Bit Vectors

● void FD_ZERO(fd_set *fdset);
» Clear out all the bits in the set fdset

● void FD_SET(int fd, fd_set *fdset);
» Set the bit for fd to 1 in the set fdset

● void FD_CLR(int fd, fd_set *fdset);
» Set the bit for fd to 0 in the set fdset

● int FD_ISSET(int fd, fd_set *fdset);
» Test whether the bit for fd is set to 1 in fdset

34

Use a Structure of Sets

typedef struct { /* represents a pool of connected descriptors */
 int maxfd; /* largest descriptor in read_set */
 fd_set read_set; /* set of all active read descriptors */
 fd_set write_set; /* set of all active read descriptors */
 fd_set ready_set; /* subset of descriptors ready for reading */
 int nready; /* number of ready descriptors from select */

 int maxi; /* highwater index into client array */
 int clientfd[FD_SETSIZE]; /* set of active descriptors */
 rio_t clientrio[FD_SETSIZE]; /* set of active read buffers */

... // ADD WHAT WOULD BE HELPFUL FOR PJ1
} pool;

35

What Was check_clients() ?

● The main loop tests for incoming connections
with FD_ISSET() only

» But we have so many other file descriptors to test!

● Store your client file descriptors in
pool.clientfd[] and test all of them with
FD_ISSET()

» Clients may be trying to send us data

» We may have pending data to send to clients

36

Suggestions

● Woah, all this code... now what?

● Start simple, get yourself familiar (a first revision!)
» Code a server to accept a single connection

» Use a telnet client to connect and send data

» Have the server read the message and display it

● Write a simple client to send messages instead of telnet

● Take it to the next level... modify it a bit (a new revision!)
» Add the non-blocking socket code

» Add select() functionality

» Have server echo back to the clients

37

Routines for Line by Line

● a read() won't always give you everything you
want!

● IRC is on a line by line basis

● If you get half a line from a read() (aka. no \n in
what you read), then buffer what you have so
far and wait to process the line

38

Roundup

● Sockets
1. Setup -- <DMACHINE,DSERVICE> -- <IP,PORT>

2. I/O – read() / write()

3. Close – close()

● Client: socket() -------------------------> connect() -> I/O -> close()

● Server: socket() -> bind() -> listen() -> accept() -> I/O -> close()

● Concurrency: select()

● Bit Vectors: fd_set, FD_ZERO(), FD_SET(), FD_CLR(),
FD_ISSET()

39

Confusion?

● The more organized you keep your file
descriptors, the better off you'll be

● Keep your while(1){ } thin, have functions
check the bit vectors

● Questions?

40

Get Started Early

● Find your partner if you have not done so already

● Share your schedules and share what days and
times you are free to meet

● Lots of c0d3 ...
» “Official Solution” -> ~5,000 lines of code by: | wc

● Work ahead of the checkpoints!

