Lecture 1
Introduction

David Andersen
School of Computer Science
Carnegie Mellon University

15-441 Networking, Spring 2008
http://www.cs.cmu.edu/~dga/15-441/S08/

Today’s Lecture

- Course outline and goals.
- Whirlwind Tour of Networking™

Course Staff

- Instructors
 - David Andersen <dga@cs.cmu.edu>, Wean Hall 8206
 - Peter Steenkiste <prs@cs.cmu.edu>, Wean Hall 8202
- Teaching assistants:
 - Xi Liu - xil@cs.cmu.edu
 - Dan Perkins - cmuwaffles@gmail.com - TBA
 - Xin Zhang - xzhang1@cs.cmu.edu

Course Goals

- Become familiar with the principles and practice of data networking.
 - Routing, transport protocols, naming, ...
- Learn how to write networked applications:
 - An IRC server
 - A peer-to-peer file transfer program
- Get some understanding about network internals in a hands on way.
 - You'll implement a routing protocol for your IRC server
 - TCP-style congestion control
Course Format

- ~30 lectures
 - Cover the “principles and practice”
 - Readings are posted beforehand
- 4 homework assignments
 - “Paper”: Do you understand and can you apply the material?
 - Feedback to students and instructors
 - “Lab”: Illustrate networking concepts
- Mid-term and final.
- 2 programming projects.
 - How to use and build networks / networked applications
 - Application layer; include key ideas from kernel
 - Larger, open-ended group projects. Start early!

Recitation Sections

- Key 441 objective: system programming
- Different from what you’ve done before!
 - Low level (C)
 - Often designed to run indefinitely. Handle all errors!
 - Must be secure
 - Interfaces specified by documented protocols
 - Concurrency involved (inter and intra-machine)
 - Must have good test methods
- Recitations address this
 - “A system hackers’ view of software engineering”
 - Practical techniques designed to save you time & pain!

Sounds Great!
How Do I Get In?

- Currently 86 people are enrolled, and no one is on the waiting list.
 - Cool.
 - We’ll update more if we end up with a waitlist due to unexpected, sudden popularity because the class is just that cool.
- But just to be sure:
 - If you do not plan to take the course, please drop it within a reasonable amount of time
 - And if you do, please make sure you’re registered!
 - We’d like a reasonable headcount
 - Let’s use the online roster to create your logins/etc. for assignments

Administrative Stuff

- Watch the course web page.
 - Handouts, readings, ...
- Read courses bboards.
 - “Announce” for official announcements
 - “General” for questions/answers
- Office hours posted on web page.
- Course secretary
 - Barbara Grandillo, Wean Hall 8018
- Office hours this week by email / appointment
 - Final office hours posted Thursday
- Books – have people gone to the bookstore? How many copies? Should be there…
Grading

- Roughly equal weight in projects and testing on course contents.
- 20% for Project I
- 25% for Project II
- 15% for Midterm
- 25% for Final exam
- 15% for Homeworks
- You need to demonstrate competence in both projects and tests to pass the course. Don’t fail any component.

Policy on Collaboration

- Working together is important.
 » Discuss course material in general terms
 » Work together on program debugging, ...
- Parts must be your own work
 » Homeworks, midterm, final
- Projects: Teams of two
 » Collaboration, group project skills
 » Both students should understand the entire project
- Web page has details.
- Things we don’t want to have to say: We run projects through several cheat-checkers against all previously and concurrently handed in versions...

Policy on Late Work and Regrading

- No assignments with a “short fuse”.
 » Homeworks: ~1 week
 » Projects: ~5 weeks
- Late work will receive a 10% penalty/day.
 » No penalty for a limited number of handins - see web page
 » No assignment can be more than 2 days late
- Only exception is documented illness and family emergencies
- Start on time!
 » Every year some students discover that a 4 week project cannot be completed in a week
- Requests for regrading must be submitted in writing with course secretary within 2 weeks.
 » Regrading will be done by original grader

This Week

- Intro – what’s this all about?
- Protocol stacks and layering
- Next week? Applications and Network programming review.
 » Socket programming (213 review++)
 » Recitations start next week: Project management (SVN, etc.)
- Course outline:
 » Low-level (physical, link, circuits, etc.)
 » Internet core concepts (addressing, routing, DNS)
 » Advanced topics
- On to the good stuff...
What Is a Network?

- Collection of nodes and links that connect them
- This is vague. Why? Consider different networks:
 » Internet
 » Andrew
 » Telephone
 » Your house
 » Others – sensor nets, cell phones, ...
- Focus on Internet, but understand important common issues and challenges

Networks Juggle Many Goals

- Efficiency – resource use; cost
- The “ilities”:
 » Evolvability
 » Managability
 » Security (securability, if you must)
 » Ease of:
 – Creation
 – Deployment
 – Management
 – Creating useful applications
 » Scalability

Challenges for Networks

- Geographic scope
 » The Internet vs. Andrew, etc.
- Scale
 » The Internet vs. your home network
- Application types
 » Email vs. Videoconferencing
- Trust and Administration
 » Corporate network – one network “provider”
 » Internet – 17,000 network providers

How to Draw a Network

Node Link Node
Building block: The Links

- Electrical questions
 - Voltage, frequency, ...
 - Wired or wireless?
- Link-layer issues: How to send data?
 - When to talk – can everyone talk at once?
 - What to say – low-level format?
 - Stay tuned for lecture 5

- Okay... what about more nodes?

... But what if we want more hosts?

- Scalability?!

Multiplexing!

- Need to share network resources

 - How? Switched network
 - Party “A” gets resources sometimes
 - Party “B” gets them sometimes

 - Interior nodes act as “Routers” or “Switches”
 - What mechanisms can share resources?

Circuit Switching

- Source first establishes a connection (circuit) to the destination.
 - Each router or switch along the way may reserve some bandwidth for the data flow

- Source sends the data over the circuit.
 - No need to include the destination address with the data since the routers know the path

- The connection is torn down.
- Example: telephone network (analog).
Circuit Switching

- Source first establishes a connection (circuit) to the destination.
- Source sends the data over the circuit.
 - Connection is torn down.
- Example: telephone network
 - Early early versions: Human-mediated switches.
 - Early versions: End-to-end electrical connection!
 - Today: Virtual circuits or lambda switching

Circuit Switching 2

- What about many connections?
 - Many wires (e.g., those big 200-pair cables you sometimes see)
- A more practical approach is to multiplex multiple circuits over a single “fast” wire.
 - Can benefit from improvements in technology
 - Fewer wires
 - Multiplexing is discussed in more detail in Lecture 5

Circuit Switching Discussion

- Circuits have some very attractive properties.
 - Fast and simple data transfer, once the circuit has been established
 - Predictable performance since the circuit provides isolation from other users
 - E.g. guaranteed bandwidth
- But it also has some shortcomings.
 - How about bursty traffic
 - Circuit will be idle for significant periods of time
 - How about users with different bandwidth needs
 - Do they have to use multiple circuits

Packet Switching (our emphasis)

- Source sends information as self-contained packets that have an address.
 - Source may have to break up single message in multiple
- Each packet travels independently to the destination host.
 - Routers and switches use the address in the packet to determine how to forward the packets
- Analogy: a letter in surface mail.
Statistical Multiplexing

- Switches arbitrate between inputs

- Can send from any input that’s ready
 » Links never idle when traffic to send
 » (Efficiency!)

- What networks can we build with these tools?

Local Area Networks (LANs)

- Benefits of being “local”:
 » Lower cost
 » Short distance = faster links, low latency
 – Efficiency less pressing
 » One management domain
 » More homogenous

- Examples:
 » Ethernet (Lecture 7)
 » Token ring, FDDI
 » 802.11 wireless (Lecture 21)

Wide Area Networks

- Distance makes things harder:
 » High(er) delays and cost → Need efficiency
 » Larger size → Need scalability
 » Heterogeneity:
 » Traffic types
 » Host needs
 » Administrative diversity → Management harder

Let’s look at one prominent example:

“The Internet”

 » A set of networks that are connected with each other
 » Networks are connected using routers that support communication in a hierarchical fashion
 » Often need other special devices at the boundaries for security, accounting, ..

- The Internet: the interconnected set of networks of the Internet Service Providers (ISPs) providing data communications services.
 » About 17,000 different networks make up the Internet

- In order to inter-operate, all participating networks have to follow a common set of rules.
Challenges of the Internet

- Scale: 100,000,000s of hosts
- Heterogeneity:
 - 18,000+ administrative domains
 - Thousands of applications
 - Lots of users
 - Fast links, slow links, satellite links, cellular links, carrier pigeons
- Diversity of network technologies
- Adversarial environment
- Oh, and let’s make it easy to use…

Implementing Packet-Switched Networks

- Requirements for packets:
 - Header information: Addresses, etc. (Lecture 9)
 - Data. What is packet size limit? (Lectures 5—9)
 - Everybody has to agree on these for interoperability
- How do packets reach destination? Routing
 - Nodes in network forward packets towards destination
 - Routing tells nodes where to send the packets they receive
 - Design questions: What criteria to decide?
 - Destination is a must
 - Source?
 - “Type”? (Lecture 11)

Routing

- Who chooses the routes?
 - A human: Static routing
 - Centralized routing (telenet, c.a. 1980s)
 - Distributed routing (Internet, …)
- Distributed routing uses a Routing Protocol
 - Many different protocols are in use.
 - Inside an organization: RIP, OSPF, etc (Lecture 11)
 - Between organizations: BGP (Lecture 12)

Network Service Model

- What is the service model?
 - Ethernet/Internet: best-effort – packets can get lost, etc.
- What if you want more?
 - Network can do it – Quality of Service
 - Benefits of circuit switching in packet-switched net
 - Hard in the Internet, easy in restricted contexts
 - Lecture 20
 - Hosts can do it – end-to-end Transport protocols
 - TCP performs end-to-end retransmission of lost packets to give the illusion of a reliable underlying network.
 - (Lectures 16—19)
Using Networks

- Layering and abstraction
 - Protocol stacks facilitate re-use
 - Hide underlying complexity from the programmer
 - Protocol reuse and code/library reuse
- Tomorrow's lecture: Programmer API
- Many "human-friendly" abstractions:
 - Higher-level protocols (e.g., reuse the Web's HTTP instead of writing your own!).
 - Naming (www.google.com vs. 64.233.161.99)
 - The Domain Name System, or DNS (Lecture 13)

Using Networks Securely

- The Internet is an unfriendly place
 - Hacking, viruses, denial-of-service, etc.
- Cryptography to the rescue:
 - Secure Sockets Layer (SSL) – https://www.foo.com/
 - Key management, etc.
 - Lecture 25
- Policy control to the rescue:
 - Firewalls / Denial of Service (Lecture 26)
 - Network address translation / virtual private networks (NAT, VPN) – Lecture 14

Applications

- All well and good to have networks that deliver packets, but what do we actually do with them?
- The Web (Lecture 23)
- Peer to Peer (Lecture 24)
- Funky research stuff (Lecture 27)

- Class Projects (…)
 - Remember, get started early. 😊