Chatbots

SHRIMAI PRABHUMOYE
ALAN W BLACK
SPEECH PROCESSING 11-[468]92
Overview

- Chatbots
- Task Oriented
- Non-Task Oriented Dialog Systems
- Building Dialog Systems
 - Retrieval Based
 - Similarity Metric
 - Generative models
Chatbots

- Designed to simulate how a human would behave as a conversational partner, thereby passing the Turing test.
- Chatbots are used for various practical purposes like customer service, personal assistants or information acquisition.
Chatbots

- **Personal Dialog Assistants**
 - Siri, Alexa

- **Helpline Chatbots**
 - hotel booking, airline reservation

- **Conversational bots**
 - Zo, Tay, Xiaoice, Facebook M
Eliza was based on keyword matching

Parry was Eliza with an attitude
Chatbots - Types

Task Oriented
- Clear and explicit intentions
- The system should have the capability to process the intents.

Non-Task Oriented
- No particular agenda
- “What’s up”, “How are you doing?”
Task Oriented

- **Intents**: actions that the user wants the system to perform
- **Slots**: arguments you need to fulfill the intent
- **Actions**: system performs the task
 - Eg: “Adds a meeting to your calendar”
- **Responses**: the utterance said by the system
 - Eg: “Meeting has been added”
User: I want to add one reminder to switch off the light.

System: Intent → Add Reminder

System: Slot → date, time and purpose

System: When would you like to set the reminder?

User: In an hour

System: Slot → 27 Oct at 4.30pm

System: Action → Set a reminder at 4.30pm on 27 Oct to switch off the light

System: I have set a reminder to switch off the light in an hour.
User: I am getting late to class, so I need the next bus to CMU. I want to reach as fast as possible.

System: Intent → to go

System: Slot → date, time, departure_stop, arrival_stop (today, in the next 10 minutes, -, CMU)

System: Where would you like to leave from?

User: I live on Whitman and bartlett

System: departure_stop → whitman and forbes (Wh-Fo)

System: Action → Find the next bus from Wh-Fo to CMU

System: The next bus is 61A in 12 minutes from Wh-Fo
Task Oriented

- Evaluation Metric:
 - Task completion success
 - Eg: The system was able to give the correct bus information, the system was able to set an alarm for the right time.
 - Length of dialog
 - Eg: The system should not ask too many questions, too many repetitions etc
Non Task Oriented

- **User1**: Hey, what’s up?
- **User2**: Nothing much. What about you?
- **User1**: Nothing, just the usual hectic life of CMU.
- **User2**: Yes, it's been so long since we caught up. We should maybe grab some coffee sometime...
- **User1**: Ya, that's true. We should definitely meet up sometime. Ok, I need to run for a class, ping me!
- **User2**: Sure, bye!
User1: Hey, have you seen the new Kingsman movie?

User2: No, what’s it about?

User1: It’s a science fiction thriller movie. Do you want to go watch it sometime?

User2: Ya sure, I like sc-fi movies.

User1: Let’s watch it over the weekend

User2: Ok 😊
Non Task Oriented

- Intents and slots are hard to design
- Can have multiple responses
- Evaluation:
 - Engagement
 - User satisfaction
 - Length of dialog
 - ...

Building Chatbots

- **Retrieval Techniques**
 - Used very often to build helpline chatbots.
 - Examples: “How do I install Ubuntu on my machine?”, “I cannot connect to network. How can I connect to wifi?”

- **Generative Models**
 - Used very often to build conversational chatbots.
 - Example: “How are you doing?”, “Can you tell me a secret?”

- **Hand – Written Rules**
 - Used very often to build some aspects of personal assistants. Eg: “Add ‘Meet Alan’ in my Calendar”
Retrieval Techniques

- Fixed set of **query-response pairs** in the database.
- **Representation** of the query and the database.
- **Metric** to compare and evaluate the best fitting response.
Representation

- Words themselves!
- N-grams
 - Unigram: $P(w)$
 - Bigram: $P(w_1, w_2)$ such as $P(“I”, “am”) \text{ and } P(“I”, “is”)$$
 - Trigram: $P(w_1, w_2, w_3)$
- Term Frequency – Inverse Document Frequency (Tf-Idf)
- Word Vectors
TF-IDF

- **Term Frequency (TF):** measures how frequently a term occurs in a document. The term frequency is often divided by the document length.

\[
tf(t, d) = \frac{f_{t,d}}{\sum_{t' \in d} f_{t',d}}
\]

- **Inverse Document Frequency:** measure of how much information the word provides, that is, whether the term is common or rare across all documents.

\[
idf(t, D) = \log \frac{N}{1 + |\{d \in D: t \in d\}|}
\]
TF-IDF Example

- Document (d) → 100 words, term “dog” appears 5 times in d.

\[tf("dog", d) = \frac{5}{100} \]

- Suppose, \(D = 10 \) million and “dog” appears in 1000 of them

\[idf("dog", D) = \log \frac{10000000}{1000} = 4 \]

- Tf-idf score: 0.05 * 4 = 0.12.

- For dialog system, we consider the entire database of “query-response” pairs as one document.
TF-IDF Representation

Vocabulary Table

<table>
<thead>
<tr>
<th>Vocab</th>
<th>Tf-Idf</th>
</tr>
</thead>
<tbody>
<tr>
<td>"the"</td>
<td>0.8</td>
</tr>
<tr>
<td>"dog"</td>
<td>0.3</td>
</tr>
<tr>
<td>"and"</td>
<td>0.5</td>
</tr>
<tr>
<td>"play"</td>
<td>0.6</td>
</tr>
<tr>
<td>"UNK"</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Representation of the input

<table>
<thead>
<tr>
<th>the</th>
<th>dog</th>
<th>and</th>
<th>the</th>
<th>cat</th>
<th>play</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Limitations

- Cannot work for synonyms
- Does not take context into account
Similarity Metric

- **Jaccard Similarity Coefficient**
 \[
 J(A, B) = \frac{|A \cap B|}{|A \cup B|}
 \]

- measures similarity between finite sample sets
- \(0 \leq J(A, B) \leq 1\)
Similarity Metric

- **Cosine Similarity**

\[
\cos(\theta) = \frac{A \cdot B}{||A||_2 ||B||_2}
\]

- Here, \(A \) = representation of the input and \(B \) = representation of the query in the database.

- For each query in the database, we calculate these scores and select the query which has **max** score.

- We return the response of this query.
Complete Example

“How can I connect to WiFi”
- Go to Settings → Wifi. Select ...

“How do I install Ubuntu 16.04”
- Download Ubuntu image ...

“How can I install Java”
- Download the jdk ...

“Which NVIDIA driver do I need for GTX 1080 Ti”
- `sudo apt install nvidia-381`

Total Query Words = 22

<table>
<thead>
<tr>
<th>Vocab</th>
<th>Tf-Idf</th>
<th>Vocab</th>
<th>Tf-Idf</th>
</tr>
</thead>
<tbody>
<tr>
<td>How</td>
<td>3/22*\log(1/2)</td>
<td>Java</td>
<td></td>
</tr>
<tr>
<td>can</td>
<td></td>
<td>Which</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>NVIDIA</td>
<td></td>
</tr>
<tr>
<td>connect</td>
<td></td>
<td>driver</td>
<td></td>
</tr>
<tr>
<td>to</td>
<td></td>
<td>need</td>
<td></td>
</tr>
<tr>
<td>Wifi</td>
<td></td>
<td>for</td>
<td></td>
</tr>
<tr>
<td>do</td>
<td></td>
<td>GTX</td>
<td></td>
</tr>
<tr>
<td>install</td>
<td></td>
<td>1080</td>
<td></td>
</tr>
<tr>
<td>Ubuntu</td>
<td></td>
<td>Ti</td>
<td></td>
</tr>
<tr>
<td>16.04</td>
<td></td>
<td>UNK</td>
<td></td>
</tr>
</tbody>
</table>
Input Representation

<table>
<thead>
<tr>
<th>How</th>
<th>do</th>
<th>I</th>
<th>connect</th>
<th>to</th>
<th>WiFi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.2</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How</th>
<th>can</th>
<th>I</th>
<th>connect</th>
<th>to</th>
<th>WiFi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How</th>
<th>do</th>
<th>I</th>
<th>install</th>
<th>Ubuntu</th>
<th>16.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.2</td>
<td>0.4</td>
<td>0.35</td>
<td>0.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How</th>
<th>can</th>
<th>I</th>
<th>install</th>
<th>Java</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
<td>0.35</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Query Representation

<table>
<thead>
<tr>
<th>Which</th>
<th>NVIDIA</th>
<th>driver</th>
<th>do</th>
<th>I</th>
<th>need</th>
<th>for</th>
<th>GTX</th>
<th>1080</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.06</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limitations of Retrieval Systems

- We have a constrained set of responses.
- No variance in the response.
- Cannot handle novel queries.
Summary

- Task Oriented
 - Intents, Slots, Responses. Evaluation by task completion.
- Non-Task oriented
 - Intents and evaluation are hard to define.
- Retrieval Techniques
 - TF-IDF representation and cosine similarity
- Limitations of Retrieval Techniques
Generative Models

Next Class!