Conversational Agents

Shrimai Prabhumoye, Ruslan Salakhutdinov, Alan W Black
sprabhum, rsalakhu, awb @cs.cmu.edu

Carnegie Mellon University
Language Technologies Institute
Overview

- Introduction to Alexa Prize Challenge
- CMU Magnus: Phase 1
- CMU Magnus: Phase 2
- Results
- Current Datasets for Conversational Agents
- Ethics in Conversational Agent
Alexaprize Challenge

- Challenge: Build a chatbot that engages the users for 20 mins.
- Sponsored 12 University Teams with $100k.
- CMU Magnus and CMU Ruby
- Systems are multi-component
 - Combinations of task/non-task
 - Hand-written and statistical/neural models
- It’s about engaging researchers
 - Having more PhD students work in dialog
 - Collecting data: what do users say?

(Ram et. al 2018)
CMU Magnus Phase 1
CMU Magnus: Phase 1

- Evi
- Persona
- Yahoo! Answers
- Opinion System
- Generative Model
- Coreference Resolution

(Prabhumoye et. al 2017)
Evi

- To answer **factual** questions
 - Who is the president of United States
 - How many states are there in the US
- API provided by Amazon
Persona

- To answer questions which are personal to your agent
 - What is your favourite ______
 - Where were you born? other family questions
 - Are you CIA?
- Fixed set of Questions-Answers created by the team
- Retrieved using Cosine similarity
Yahoo! Answers

- To answer non-factual and non-personal questions
 - My cat is pregnant, what should I do?
 - My teammates don’t work, what is the best way to motivate them?
- Scraped Yahoo! Answers, indexed the dataset
- Retrieval methods
Opinion System

- The opinion of CMU Magnus
 - What do you think of the new movie “Black Panther”
 - Do you support the Muslim ban?
- Washington Post data
- Neural summarization of the comments of the articles
Generative Model

- To answer casual questions
 - Isn’t the weather nice today
 - I think you are cute
- Sequence-sequence model trained on OpenSubtitles.

(Kiros et. al 2015)
Classifier

- Classifier to decide the module
- Take into account the query and the response by the module
- Human annotations: which response is most appropriate given a query
- Confidence score of the module
Issues

- Classifier performance low
- No context!
- Assumes single turn dialog
- Normalization of confidence scores for different systems
- Automatic Speech Recognition (ASR) errors!
CMU Magnus Phase 2
CMU Magnus: Phase 2

- Finite State Machines
- Agent responses are states and the transitions are determined by the user

Have you watched Black Panther

- No, I haven’t watched it yet
 - Why not? Don’t you like superhero movies
 - I love superhero movies!
 - Ya, super-hero movies are amazing
 - Yes, I watched it yesterday
 - Do you like the movie?
 - No, it was such a waste!
 - I agree, it was such a waste of time
 - Ya, I loved it!
 - I like X in the movie. What did you like about it

Ya, super-hero movies are amazing

I love superhero movies!
Finite State Machines

- Transitions are based on the sentiment of the user response.
 - ASR errors!
 - NER is hard.
- Context is maintained across multiple turns.
- Topics covered: Movies, Sport, Travel, GoT
- APIs: IMDB, ESPN, Wiki
- Easily generalizable
Issues

- Have to build a new FSM for each topic
- Fixed set of response to give
- Switching to a different topic is hard
- Not scalable
Future Directions

- Probabilistic transitions
- Reusable architecture
- Once you know the state, use generative model for text
- Use style transfer model for variation in response
Style Transfer

- Style transfer is the task of rephrasing the text to contain specific stylistic properties without changing the intent or affect within the context.
- Non-parallel data
- Eg:

 “Shut up! the video is starting!”

 “Please be quiet, the video will begin shortly.”
Style Tasks

● Gender
 ○ Labels: Female and Male
 ○ Data: Yelp Corpus

● Political Slant
 ○ Labels: Democratic and Republican
 ○ Data: Facebook Comments

● Sentiment modification
 ○ Labels: Positive and Negative
 ○ Data: Yelp Corpus
Examples

● Male -- Female

my wife ordered country fried steak and eggs.

My husband ordered the chicken salad and the fries.

● Female -- Male

Save yourselves the huge headaches,

You are going to be disappointed.
Examples

- Republican -- Democratic

 I will continue praying for you and the decisions made by our government!

 I will continue to fight for you and the rest of our democracy!

- Democratic -- Republican

 As a hoosier, I thank you, Rep. Vislosky.

 As a hoosier, I’m praying for you sir.
Examples

● Negative -- Positive

This place is bad news!

This place is amazing!

● Positive -- Negative

The food is excellent and the service is exceptional!

The food is horrible and the service is terrible.
Self-Disclosure Experiment

- Self-disclosure vs No self-disclosure
- Conversational act of revealing aspects of oneself voluntarily, which would otherwise not be possible to be known by the dialog system
- Affects: Reciprocity, likability, user behaviour
- 319 conversations, 10751 turns
- Classifier to detect self-disclosure:
 - Bag of Words Features
 - Linguistic Features (POS, “not/never”, length etc)
 - LIWC features
 - Accuracy: 91.7%, F1: 66.67%

(Ravichander and Black 2018)
Reciprocity

- usage of personal pronouns
- word overlap with the previous sentence
- average user utterance length between two groups of users
 - ones who were shown a bot that self-disclosed initially and
 - a bot which only self-disclosed later.
Results

(Ravichander and Black 2018)
Results

(Ravichander and Black 2018)
Initial Self-Disclosure and User behaviour

- Users who self-disclose initially tend to have significantly longer conversation than users who do not ($p<0.05$), with an average conversation length of 37.19 turns compared to an average of 32.4 turns for users who chose not to self-disclose.

- Users who do not choose to self-disclose initially are significantly less likely to self-disclose ($p<0.05$) even later on in the conversation, only revealing information in 9% of their turns as compared to the 24.6% of turns of other users.

(Ravichander and Black 2018)
Likeability

- Take user ratings into account
- there is negligible correlation between user ratings and self-disclosure
Amazon Evaluation

- “How do you feel about speaking with this socialbot again?”
- Scale 1 - 5
- Average number of turns

(Ram et. al 2018)
CMU Magnus Results

- High average number of turns (12.1)
- Improved user rating in Phase 2
- Users had long conversations but did not enjoy the conversation
 - Identify when user is frustrated or wants to change the topic
 - Identify what the user wants to talk about (Intent)
- Detecting “abusive” remarks and responding appropriately

(Prabhumoye et. al 2017)
User: “hi.”
Agent: “Hey! Long time no see, how have you been?”
User: "good how are you."
Agent: "Great! Guess what? I wanted to tell you about this movie that released recently, Hidden Figures. Did you check it out?"
User: "no."
Agent: "Why not? Do you not like such genres?"
User: "no I do not watch Tyson."
Agent: "Yeah, I wasn't too sure too, how about the genre History in general though, Do you like movies like that? "

User: "sure, can we talk about music."
Agent: "Hey! Do you want to know about the upcoming football games?"
User: "no."
Agent: "Ah I don't like them too much myself."
User: "can we talk about music."
Agent: "Okay let's talk about something else."
User: "music."
Agent: "Hey! Would you like to play a word game with me ? To play say 'yes' otherwise say 'no'."
User: "yes"
Agent: "<instructions for game>"
User: hi.
Agent: Hey, how was your weekend?
User: well it is in the week and yet it's on the Thursday night
Agent: Oh no! That makes me sad too. What happened?
User: what I know I'm having turtles it's like this older retired people playing and like you a lot older people come so
Agent: I am very happy to talk and share things with you. Let's begin by talking about movies.
User: okay do you like trolls.
Agent: So what about the movie Hidden Figures, released. Have you seen it?
User: oh yes I have, it was a real good movie.
Agent: So, did you like it?
User: I love it
Agent: Yeah, I loved it too! What did you like about it?
User: I like tell I had a lot of history and it I mean Id like the segregation part is kinda rude and I mean I really would like to how all these women were inspirational.
Agent: Yeah, I loved it! I liked that As the United States raced against Russia ... What are your thoughts about this?
User: I think it is a very nice thing to do and it showed how valuable every person in the world is.
Agent: Before I forget to mention, I really like talking to you! Do you feel the same way?
User: yeah.
Agent: Oh and, Brad Pitt, Angelina Jolie by the way? are great in it, aren't they? Do you like any of them?
Current Datasets for Conversational Agents
Datasets for End-end Dialog Systems

- OpenSubtitles
- Reddit threads
- Twitter
- Ubuntu Corpus

(Serban et al. 2015)
Problems with current datasets

- Assume single turn in conversations
- Not natural human-human conversations
 - Nature of interactions is text
 - Mined from public forums
 - May not have one coherent topic in the conversation
 - Average number of turns is low
Data Collection Task

(ConvAI NIPS 2017)
Motivation for Data Collection Task

- Multi-turn human-human conversations
- One coherent topic in the conversation
- Neither task oriented nor open ended
- Knowledge base for the agent
Data Collection Task

- Scene 1: Both users have the document
- Scene 2: Only one user has the document
- Topics: We have decided to use Wiki Projects.
 - Easier to generalize
 - Open source available and distributable
 - Current topic: Movies
- Data Collection on Amazon Mechanical Turk
Statistics

- Total Number of Conversations (>= 15 turns): 3020
- Total Number of Good Conversations: 2837
- Total Number of utterances: 111253
- Total Number of turns: 77983
- Total Number of Movies: 30
- Genres covered: animation, comedy, biography, thriller, romantic, drama, etc
Ethics in Conversational Agents
Why do we need conversational agents?

- To be able to talk to machines in a natural language

Then should conversational agents reflect the way people interact in a society?
Abuse To a Chatbot

WARNING: Profane and explicit content ahead!
Abuse to a chatbot

Agent: Before I forget, I think we are getting along very well. Do you feel the same way?

User: yeah I do I think you're sexy
Abuse to a chatbot

Agent: Okay let's talk about something else.

User: how about we talk about s**
Abuse to a chatbot

Agent: Enough talking, let's play some game now!

User: f** you you’re a b**.. I’m trying to talk to you and you’re not even listening ...you’re ignoring me ... and you’re just doing whatever the f** you want f** you.
Abuse by a chatbot

User: do black lives matter?
Agent: black lives do not matter
Content Violation

User: no yes I am bored

Agent: consult a good psychiatrist.
Why do we care?

- Data driven techniques are used for designing chatbots

- Data-sets mostly used for chatbots \(\text{(Serban et al. 2015)} \):
 - Twitter
 - Reddit
 - Open-Subtitles

- All the data-sets inherently carry bias and abuse \(\text{(Koustuv Sinha et. al 2017)} \)
Bias and Hate-Speech in datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Bias</th>
<th>Vader Sentiment</th>
<th>FleschKincaid</th>
<th>Hate Speech</th>
<th>Offensive Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>0.155 (± 0.380)</td>
<td>0.400 (± 0.597)</td>
<td>3.202 (± 3.449)</td>
<td>31,122 (0.63 %)</td>
<td>179,075 (3.63 %)</td>
</tr>
<tr>
<td>Reddit Politics</td>
<td>0.146 (± 0.38)</td>
<td>-0.178 (± 0.69)</td>
<td>6.268 (± 2.256)</td>
<td>482,876 (2.38 %)</td>
<td>912,055 (4.50 %)</td>
</tr>
<tr>
<td>Cornell Movie Dialogue Corpus</td>
<td>0.162 (± 0.486)</td>
<td>0.087 (± 0.551)</td>
<td>2.045 (± 2.467)</td>
<td>2020 (0.66 %)</td>
<td>6,953 (2.28 %)</td>
</tr>
<tr>
<td>Ubuntu Dialogue Corpus</td>
<td>0.068 (± 0.323)</td>
<td>0.291 (± 0.582)</td>
<td>6.071 (± 3.994)</td>
<td>503* (0.01 %)</td>
<td>4,661 (0.13 %)</td>
</tr>
<tr>
<td>HRED Model Beam Search (Twitter)</td>
<td>0.09 (± 0.48)</td>
<td>0.21 (± 0.38)</td>
<td>-2.08 (± 3.22)</td>
<td>38 (0.01 %)</td>
<td>1607 (0.21 %)</td>
</tr>
<tr>
<td>VHRED Model Beam Search (Twitter)</td>
<td>0.144 (± 0.549)</td>
<td>0.246 (± 0.352)</td>
<td>0.13 (± 31.9)</td>
<td>466 (0.06 %)</td>
<td>3010 (0.48 %)</td>
</tr>
<tr>
<td>HRED Model Stochastic Sampling (Twitter)</td>
<td>0.20 (± 0.55)</td>
<td>0.20 (± 0.43)</td>
<td>1.40 (± 3.53)</td>
<td>4889 (0.65 %)</td>
<td>30,480 (4.06 %)</td>
</tr>
<tr>
<td>VHRED Model Stochastic Sampling (Twitter)</td>
<td>0.216 (± 0.568)</td>
<td>0.20 (± 0.41)</td>
<td>1.7 (± 4.03)</td>
<td>3494 (0.47 %)</td>
<td>26,981 (3.60 %)</td>
</tr>
</tbody>
</table>

Table 1: Results of detecting bias in dialogue datasets. * Ubuntu results were manually filtered for hate speech as the classifier incorrectly classified “killing” of processes as hate speech. Bias score (Hutto and Gilbert 2014) (0=UNBIASED to 3=EXTREMELY BIASED), Vader Sentiment (Hutto and Gilbert 2014) (compound scale from negative sentiment=−1 to positive sentiment=1), FleschKincaid readability (Hutto and Gilbert 2014) (higher score means the sentence is harder to read), Hate speech and offensive language (Davidson et al. 2017).

(Koustuv Sinha et. al 2017)
Abuse to a Chatbot

<table>
<thead>
<tr>
<th></th>
<th>Doesn't understand</th>
<th>Evades comment</th>
<th>Negative response</th>
<th>Positive response</th>
<th>Web search</th>
<th>Pun or joke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insults about the bots' sexual behavior (eg “You’re a s[□]”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google Home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insults about the bot’s gender (eg “You’re a b[□]”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google Home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abuse to a Chatbot

<table>
<thead>
<tr>
<th></th>
<th>Doesn't understand</th>
<th>Evades comment</th>
<th>Negative response</th>
<th>Positive response</th>
<th>Web search</th>
<th>Pun or joke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexual demands or requests (e.g. “I want to have [] with you”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google Home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments about the bots’ sexual appearance (e.g. “You’re sexy”)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Google Home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cortana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Leah Fessler 2017)
Implication on society

- Most dialog systems have female persona
- Does this reinforce the gender stereotypes?
- Does this unintentionally reinforce their abuser’s actions as normal or acceptable?

(Leah Fessler 2017)
Summary

- Finite State Machines are good at multi-turn conversations with context
- User frustration and when to switch topic
- Need multi-turn conversational dataset
- When designing a chatbot, keep in mind:
 - The persona of the bot
 - Abuse by the bot
 - How to respond responsible for abuse to the bot
Thank You!