Say the binding time of s were S and d were D in the following code:

and assume cons were treated as a generic primop (ie \\widetilde{cons} = \\widetilde{prim}) then x would be D, even though we can deduce its value at compile time by using the semantics of cons and car.

To do this, first allow partially static binding times:

and define \\widetilde{cons} and \\widetilde{car} specially:

In the above example, p would then be assigned the partially static binding time (cons S D), and x would be S. \\widetilde{cdr} is defined similarly.

These new binding times are ordered as follows to make a lattice:

S and D are still bottom and top, but between them lie the partially static binding times.

Ok, that much is easy, but it has a serious problem: the lattice now contains infinite ascending chains. Eg

This happens if the source program recurses over a potentially unbounded data structure. The BTA could detect this conservatively and lift the offending value to D, but this loses too much information (see envs). Instead, directed graphs are used to abstract partially static values of unbounded size.

Since there are only a finite number of cons instructions in the source program, one of them must be repeated in the BTs of an ascending chain. Such a BT can be widened [Cousot] by merging the duplicate nodes, and joining the children. We label the cons nodes so that duplicates can be identified:

Cp stands for cons point, it is represented with a pointer to the root source instruction where this cons is created. Cons points are denoted with the name of the variable bound to the cons cell, eg the binding time of p above is written (cons S D p).

Thus if two nodes with the same cons point (say (cons a1 d1 p) and (cons a2 d2 p)) appear in a binding time, then that BT can be widened by replacing them with the single node (cons (\\sqcup a1 a2) (\\sqcup d1 d2) p).

The formal definition of the ordering of the lattice is now:

By collapsing all nodes with duplicate cons-points, infinite ascending chains can be avoided, guaranteeing termination (see envs).

One of these new binding times is a graph grammar dividing a data structure into static and dynamic portions. Sometimes an atom is identified as partially static by the grammar, but this is allowed since in abstract interpretation we only need approximate actual values, and any partially static value approximates a purely static one.

The quality of an abstraction is measured by how well it matches the distinctions required between typical programs. Grammars have proven tremendously effective in capturing information about data structures with finite descriptions. [Mogensen89] first applied grammars to partially static structures, the techniques was later refined in [Consel90] and [Consel93].

Implementations of partially static structures usually have to be careful to avoid the following unsound reduction:

But in continuation-passing style, arguments to prims are variables not expressions, so there is no danger in eliminating them. Instead I plan to do all dead code elimination in the backend.