Incremental Copying Collection with Pinning (Progress Report)

Daniel Spoonhower
Carnegie Mellon University
spoons+@cs.cmu.edu

(Joint work with Guy Blelloch and Robert Harper)

January 12, 2004
What? Why?

- Real-time memory management
 - explicit
 - static analysis (e.g. region inference)
 - modern garbage collection ← this talk
- Real-world constraints
 - e.g. object pinning
- Tradeoffs in GC design
 - copying vs. non-copying collection

Use mostly-copying collection to balance competing design goals
Background

- Extension of Cheng *et al.* work [PLDI ’01]
 - bounds time and space consumed by GC
 - minimum mutator utilization
 - based on copying collection
- Real-world environment – Rotor (a.k.a. SSCLI)
 - JIT + run-time + GC
 - pinned objects, finalizers, &c.
- **Goal:**
 - single framework supporting both performance and semantics
 Mostly-Copying Collection

• Bartlett [TR ’88]
 ◦ ambiguous roots (i.e. untyped stack values)
• Pinned objects are “uncooperative”
 ◦ only roots are pinned
• Mostly-copying collection
 ◦ heap divided into pages
 ◦ from- and to-space defined logically
 ◦ ambiguous/pinned roots promoted “in-place”
Mostly-Copying Collection

divide heap into pages...
Mostly-Copying Collection

...begin collection...

SPACE ’04 – Incremental Copying Collection with Pinning (Progress Report) – p.5
Mostly-Copying Collection

...promote (by copy)....
Mostly-Copying Collection

...pinned...
Mostly-Copying Collection

...page promotion!
Tradeoffs

- Copying collectors
 - simple / fast allocation
 - better asymptotic time
 - may improve locality

- Non-copying collectors
 - conservative collection
 - pinning
 - less space
 - large and older objects
Other Applications

• Large objects
 ◦ occupy one or more pages
 ◦ expensive to copy, often long lived
 ◦ promote in-place

• Dense pages
 ◦ many reachable objects
 ◦ little fragmentation
 ⇒ little to be gained from compaction
Page Residency

(or Density or Occupancy)

= % of page that is reachable

• Estimation
 ◦ heuristic: measure during previous cycle
 • compacted pages → 100%
 • promoted pages as measured
 • young pages → 0%

• Residency threshold
 ◦ determines when to promote by copy / in-place
 ◦ causes behavior to range from semi-space to mark-sweep
Preliminary Results

- Effectiveness of promotion strategy
 - fraction of promotion in-place
 - error in estimate (as % of in-place)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Page Promoted</th>
<th>Estimate Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>huffman</td>
<td>90.03%</td>
<td>0.04%</td>
</tr>
<tr>
<td>xml</td>
<td>51.89%</td>
<td>10.36%</td>
</tr>
<tr>
<td>splay</td>
<td>70.25%</td>
<td>11.86%</td>
</tr>
</tbody>
</table>
Continuing Work

- Continued analysis
- Experiments
- Incremental, concurrent, parallel collection
- Impact of other language features on GC