
Using Page Residency to Balance Tradeoffs
in Tracing Garbage Collection

Daniel Spoonhower∗

spoons@cs.cmu.edu
Guy Blelloch

blelloch@cs.cmu.edu
Robert Harper

rwh@cs.cmu.edu
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT
We introduce an extension of mostly copying collection that
uses page residency to determine when to relocate objects.
Our collector promotes pages with high residency in place,
avoiding unnecessary work and wasted space. It predicts the
residency of each page, but when its predictions prove to be
inaccurate, our collector reclaims unoccupied space by using
it to satisfy allocation requests.

Using residency allows our collector to dynamically bal-
ance the tradeoffs of copying and non-copying collection.
Our technique requires less space than a pure copying col-
lector and supports object pinning without otherwise sacri-
ficing the ability to relocate objects.

Unlike other hybrids, our collector does not depend on
application-specific configuration and can quickly respond
to changing application behavior. Our measurements show
that our hybrid performs well under a variety of conditions;
it prefers copying collection when there is ample heap space
but falls back on non-copying collection when space becomes
limited.

General Terms
algorithms, languages, measurement, performance

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection); D.3.2 [Programming Lan-
guages]: Language Classifications—C#

Keywords
compaction, fragmentation, object pinning, predicted resi-
dency

∗This work was supported by a Microsoft Graduate Fellow-
ship and a generous gift from Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VEE’05,June 11-12, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-047-705/0006 ...$5.00.

1. INTRODUCTION
Garbage collectors in modern virtual machines must sat-

isfy the demands of both a high-level language and a native
runtime implementation. While the former takes an abstract
view of memory, the latter requires a transparent interface
where the position and layout of heap objects are made ex-
plicit. To interoperate with existing libraries, many lan-
guages also provide foreign function interfaces (e.g. Haskell
[10], Java [27]). Each of these imposes constraints on how
garbage can be collected, for example by limiting when ob-
jects can be relocated.

In this work, we explore the tradeoffs of tracing garbage
collection. We show how the two simplest forms of trac-
ing collection, mark-sweep and semi-space collection, com-
plement each other not only in terms of their benefits and
costs, but also in their approaches to reducing fragmenta-
tion. We observe that there is a smooth continuum of trac-
ing collectors that spans both mark-sweep and semi-space
collection and use this insight to design a garbage collector
that combines these two techniques dynamically. We have
implemented our collector as part of a virtual machine for
C# [19] and measure the overhead of the collector for sev-
eral benchmarks. Our experiments show that our collector
mimics the behavior of either a copying or a non-copying col-
lector depending on which would yield better performance.

Many collectors combine copying and non-copying collec-
tion by grafting several smaller heaps together and using
a different technique to manage each heap. For example,
large objects are often relegated to a separate heap that is
managed using a mark-sweep collector [29, 9]. In addition
to size, objects in these separate heaps may also be distin-
guished using profiling information [12, 5].

Some generational collectors [22, 28] also combine copying
and non-copying collection by distinguishing objects based
on their age and using different techniques for the nursery
and the older generations. Generational collectors improve
collector performance in two ways. First, they improve la-
tency (on average) by performing partial traversals of the
heap during minor collections. Second, they may improve
throughput by focusing on portions of the heap that contain
few reachable objects: if the (weak) generational hypothesis
holds, most objects will die young and the nursery will be
relatively sparse.

Bartlett’s mostly copying collector [3] combines copying
and non-copying collection to support compaction in an en-
vironment with ambiguous roots (i.e. where the types of

roots are unknown). It divides the heap into a set of pages
and uses a different technique for each page depending on
the presence of one or more ambiguous roots.

Mostly copying collection forms the foundation for our
work. Unlike hybrid collectors where each portion of the
heap is statically configured to use either copying or non-
copying collection, our collector allows the technique used
to manage each page to vary from one collection to the next.

Instead of “syntactic” properties such as size or alloca-
tion point, our collector relies on page residency to deter-
mine which pages should be managed using copying collec-
tion and which using non-copying collection. Since residency
reflects the runtime behavior of the mutator, we claim that
our collector can adapt more easily to shifting memory usage
patterns.

Although age has been shown to be a good indicator of the
expected lifetime of young objects [18], we count age as only
one of many predictors of residency. To take advantage of
the relationship between age and expected lifetime, genera-
tional collectors must group objects of similar age together.
The generational hypothesis implies that the residency of
the nursery will be low because the nursery contains only
young objects. We present a set of heuristics for predicting
residency in Section 4 and a description of our algorithm in
Section 5.

The experiments described in Section 6 show that our
collector performs well under a variety of conditions using
a single configuration. For example, our collector makes
effective use of space regardless of the overall residency of
the heap.

In this work, we focus primarily on the tradeoffs of trac-
ing collection and on improving collector throughput. We
extended our hybrid collector with a form of replicating in-
cremental collection [24] to improve its latency, but defer
discussion of incremental collection to Section 8.

The main contributions of this work include:

• the identification of a continuous range of tracing col-
lectors including mark-sweep and semi-space collectors
as antipodal strategies,

• the recognition of measured and predicted residency as
the driving properties behind the behavior of tracing
collectors (including existing hybrid algorithms), and

• an implementation that measures and predicts resi-
dency to dynamically balance the tradeoffs of copying
and non-copying collection.

To give a better sense of how we arrived at our current
collector design, we begin with a historic development of our
ideas and an explanation of the work on which we build.

2. MOTIVATION AND BACKGROUND
The original goal of the current work was to extend the

real-time collector of Blelloch and Cheng [6] with support for
pinned objects. Blelloch and Cheng showed that replicating
collection [24] can support concurrent and parallel collec-
tion with low latency. However, no pure copying collector
can support pinned objects: unlike most objects in the heap,
each pinned object must remain at a fixed location for some
extended, but unspecified period of time. Pinned objects
are required by many virtual machines and are essential in
a language with a foreign function interface (e.g. Haskell

[10], Java [27]) or in any programming environment that of-
fers a transparent view of memory (e.g. languages such as
C# [19] that support address arithmetic). Though our im-
plementation uses replicating collection to give small upper
bounds on pause times, our ideas apply to other forms of
incremental collection as well.

Our collector supports pinning on a “pay-as-you-go” basis:
its consumption of time and space are bounded only so long
as objects are not frequently pinned. We are willing to relax
our constraints on resource consumption when many objects
are pinned, as pervasive use of pinning can defeat any efforts
of the collector to manage the heap effectively.

Balancing Tradeoffs.Support for pinned objects and the
ability to improve locality are examples of features that drive
the design of hybrid tracing collectors. The remaining trade-
offs of pure copying and non-copying collectors are reviewed
briefly below. We provide only a cursory description as a
reminder of the numerous complementary aspects of these
two forms of tracing collection. (Jones and Lins provide a
more thorough survey and comparison of these techniques
[20].)

Copying collectors [17] eagerly reduce fragmentation by
reorganizing the heap during each collection. This reor-
ganization affords several advantages, including improved
locality of reference and faster allocation, but comes at a
cost: copying objects requires additional time and space,
and potentially dirties more pages in the cache. In contrast,
non-copying collectors [23] only attempt to reduce fragmen-
tation by using unoccupied space to satisfy allocation re-
quests. They do not offer the benefits of reorganizing the
heap, but neither do they pay the penalties. They perform
well even if the heap is densely populated, and they support
a broader set of language semantics, including “conserva-
tive” collection [7] and object pinning.

To build a collector that aggressively defragments the
heap and provides good asymptotic bounds on running time,
but naturally supports pinned objects, we look to type-
inaccurate or “conservative” collection for inspiration.

Mostly Copying Collection.Bartlett proposed mostly copy-
ing collection [3] as a mechanism to mediate some of these
tradeoffs: his collector supports a limited form of compaction
in the presence of ambiguous roots. Bartlett’s collector di-
vides the heap into a set of pages,1 rather than two semi-
spaces. The distinction between the from-space and to-space
is made logically rather than by fixed ranges of addresses.
Seen abstractly as sets of pages, the from- and to-spaces
are not necessarily contiguous regions of memory, and pages
may move fluidly from one set to the other.

During collection, reachable objects are “moved” into to-
space. An individual object can be moved either by evac-
uating it to a to-space page and updating any references
to it (as in semi-space collection), or by promoting the en-
tire page on which it resides. In the latter case, a page is
promoted by simply removing it from the set of from-space
pages and adding it to the set of to-space pages. Roots
whose types are unknown are promoted in place, and there-

1In both Bartlett’s implementation and ours the size of a
heap page may be chosen independently of size of pages
managed by the operating system.

fore, those that are misclassified (as pointers) will not be
changed erroneously during collection.

Though our collector maintains accurate type information
about the call stack, certain roots are designated by the pro-
grammer as pinned roots. This imposes a constraint similar
to that addressed by Bartlett: the collector must preserve
the address of any object that is the referent of one or more
pinned roots.

Large Objects.Simultaneously supporting ambiguous roots
and heap compaction is only one way that mostly copy-
ing collection can balance the tradeoffs of copying and non-
copying collection: there are other opportunities to use in-
place promotion. In particular, it is well-recognized [26] that
there is little or no benefit in copying objects that consume
all of the space associated with a page. These large objects
are expensive to copy, both in terms of the time required to
do so and the additional space required for the duplicate. In-
stead, large objects can be promoted in place just as if they
are pinned. Thus our collector treats large objects using the
same mechanisms already employed for pinned objects. Ob-
jects larger than a single page are allocated using a set of
contiguous pages. Though it may be necessary to relocate
existing objects to fulfill these requests, we speculate that
nearly all such requests can be satisfied without moving any
objects.

Support for pinned and large objects are both features
usually associated with non-copying collectors, yet mostly
copying collection allows us to integrate them cleanly into a
copying collector. In both cases the “down payment” is low:
there is little impact on performance if the mutator does not
use pinning or allocate large objects.

3. PAGE RESIDENCY
Large objects provide an illustrative example of the differ-

ences between copying and non-copying collection. We claim
that collectors should avoid copying large objects not only
because they are expensive to copy, but because there is little
or nothing to be gained in doing so. Pages containing large
objects make exemplary candidates for in-place promotion
because the collector can determine a priori that there is
little risk of fragmentation. Ideally, the collector would pro-
mote only those pages where the cost of copying reachable
objects outweighs the otherwise resulting fragmentation.

Previous implementations of mostly copying collection [3,
26] promoted pages only in the presence of ambiguous roots
or large objects. We extend this work and use page resi-
dency, the density of reachable objects on a page, to deter-
mine when to promote or evacuate the objects on a given
page. Using this concept, we say that if the residency of
a page is sufficiently high, the page should be promoted in
place. Seen in this light, large objects should remain in fixed
positions in the heap, not merely because they are large, but
because they occupy densely populated pages.

A Continuum of Tracing Collectors.Using residency to
determine which pages should be evacuated, and which should
be promoted, gives rise to a range of collector configurations
determined by an evacuation threshold. In each configura-
tion, a page will be evacuated if its residency is less than or
equal to this threshold. At one extreme of this range is a
semi-space collector, which evacuates all pages regardless of
their residency.

0

20

40

60

80

100

0 20 40 60 80 100

r a
(%

)

re (%)

Mark-sweep

Semi-space
Passive

Overly aggressive

u

u

Figure 1: A Continuum of Tracing Collectors. Each
point represents a different tracing collector. Both
the x- and y-axes range over residency thresholds.
The x-axis ranges over the maximum residency at
which a page will be evacuated, and the y-axis over
the maximum residency for a page that will be con-
sidered during allocation.

To allow our collector to reclaim space during the alloca-
tion phase, we identify a second, orthogonal range of config-
urations defined by an allocation threshold. The unoccupied
space on pages whose residency is less than or equal to this
threshold will be used to satisfy mutator allocation requests.
At one extreme lies a mark-sweep collector, which uses all
free space in the heap to satisfy allocation requests.

Using both thresholds yields a continuum of tracing col-
lectors that includes both semi-space and mark-sweep col-
lectors as depicted in Figure 1. The horizontal axis gives
possible values for the evacuation threshold re, while the
vertical axis gives possible values for the allocation thresh-
old ra. Both axes range from 0 to 100%. If the page resi-
dency r is less than or equal to re then objects on the page
will evacuated during collection; if r is less than or equal
to ra then free gaps on the page will be considered by the
allocator in satisfying requests for more memory.

An evacuation threshold of 100% indicates that objects
will always be evacuated during collection (since page res-
idency is always less than or equal to 100%). This corre-
sponds to the behavior of a semi-space collector. On the
other hand, an evacuation threshold of 0% says that (be-
cause no objects will be found on a page with 0% residency)
all objects will be promoted in place.

An allocation threshold of 0% indicates that the free por-
tions of any page containing reachable data will never be
considered for reuse until all reachable data has been evac-
uated from the page (i.e. the page contains exactly one
“gap”). Again, this corresponds to the behavior of a semi-
space collector. At the opposite extreme, an allocation thresh-
old of 100% says that any unused space can be used for
allocating new objects.

Limiting Fragmentation.These two thresholds determine
how and when the collector reduces fragmentation in the

heap. For example, semi-space collectors eliminate all frag-
mentation during the collection phase. Mark-sweep collec-
tors discover fragmentation during collection, but only re-
duce it during allocation by using new objects to fill in the
gaps between old ones. In this case, another collection is ini-
tiated only when the remaining gaps are too small to satisfy
the current allocation request. Thus reducing fragmentation
during collection is a property of copying collectors, while
reducing fragmentation during allocation is a property of
non-copying collectors.

Configurations in the lower-left part of the graph (where
both re and ra are small) permit significant fragmentation
to persist through both the collection and allocation phases.
These “passive” collectors make poor use of space by neither
reorganizing the heap during collection nor filling in unused
gaps during allocation. Large parts of the heap will remain
unavailable to the mutator, and reachable objects will be-
come strewn throughout the heap, resulting in poor cache
performance.

The “overly aggressive” configurations along the upper
and right-hand edges also suffer from a poor use of resources.
Just as permitting fragmentation has an overhead (e.g. larger
memory footprint, poor locality), reducing it also incurs
costs. Reducing fragmentation requires either additional
space to hold duplicates (as in a semi-space collector) or
additional passes over the heap to rearrange live objects (as
in a mark-compact collector).

We find that admitting a small amount of fragmentation
improves the performance of our collector. Our hybrid col-
lector uses page residency to quantify fragmentation and to
reduce (but not eliminate) fragmentation during both the
collection and allocation phases. To do so, it must deter-
mine the residency of each page precisely and efficiently.

4. PREDICTING RESIDENCY
Measuring the residency of even a single page requires

a traversal of the entire heap. Our collector measures the
residency of each page as part of the normal traversal that
occurs during collection. Then it uses this information to
determine the set of pages that will be used to satisfy al-
location requests. However, the set of pages that will be
promoted in place should reflect the residency of each page
at the beginning of a collection, before the heap is traversed.

Since our goal is to use residency to improve the perfor-
mance of our collector, we consider an additional traversal
at the beginning of each collection to be prohibitively ex-
pensive. Instead of using the actual residency to determine
which pages will be promoted in place, our collector uses the
predicted residency of each page.

We describe several heuristics for predicting page resi-
dency. Our collector relies on past measurements of the
residency to form its predictions, but we also identify two
additional predictors of residency. In the first case, resi-
dency predictions are based on static configuration param-
eters: certain pages are permanently designated as densely
populated and others as sparsely populated. In the second
case, the age of objects residing on a page is used to predict
the page residency.

4.1 Historical Measurements
Our collector uses residency measurements taken during

one collection to predict the residency of each page at the be-
ginning of the next collection. Residency is measured during

the tracing phase; the residency of a page is updated each
time an object on that page is shaded.

Our implementation assumes that the residency of each
page will remain unchanged from one collection to the next.
However, this assumption is not essential to our algorithm.
More sophisticated heuristics for predicting residency might
account for the rate at which objects become unreachable,
for example, by using decay models to compute residency
as a function of time. Furthermore, while our collector cur-
rently uses only the most recently measured residency, it
could maintain a series of historical measurements for pages
that are promoted in place during several consecutive col-
lections.

For each page whose predicted residency is less than or
equal to the evacuation threshold, space must be reserved
to hold replicas in the next collection. Thus the end of
one collection is a natural time to determine which pages
will be promoted in the next collection, since that is when
it must also determine how much space can be allotted to
the mutator and how much must be reserved for evacuated
objects.

Our collector has no historical measurements for those
pages that have not yet survived a collection. One design
choice is to assume a small, fixed residency for all young
pages. Instead, our collector records the residencies of young
pages during the collection phase and uses these measure-
ments to predict the residency of young pages in the future.
This is similar to a technique used in garbage-first collection
[15].

This heuristic still assumes that the residency of young
pages will be uniform. An alternative heuristic would mea-
sure age not in terms of the number of collections survived
but in terms of bytes subsequently allocated. Following
the intuition of older-first garbage collection [13] our col-
lector could predict that the residency of pages allocated
just before a collection will be higher than those allocated
earlier, possibly promoting the former in place (depending,
of course, on the evacuation threshold).

Note, however, that the predicted residency of young pages
is used only to determine the promotion strategy and not
the amount of space that must be reserved for replicas. In
contrast, the measured residency of an older page forms an
upper bound on the amount of data that may be evacuated
during the next collection (unless free space on the page
is used to satisfy new allocation requests). Our collector
conservatively estimates the amount of space that must be
reserved for replicas by considering the maximum amount
of data that may be evacuated from each page, regardless of
the predicted residency.

4.2 Static Configuration
Instead of using historical measurements, the residency of

each page can be predicted using configuration parameters
set by the application programmer or the end user. If the
behavior of the mutator is known in advance, the collector
can be configured to anticipate that behavior.

This configuration effectively determines the predicted res-
idency of each page on a rough scale. Existing hybrid col-
lectors then use a heuristic to determine whether a given
object should be allocated on a high residency page or a low
residency page. Since predictions about page residency re-
main fixed, the performance of the collector depends on the

Page status Contents during Contents during Role in semi- Colors during collection
allocation phase collection phase space collection

EVACUATED new and surviving original copies from-space white
objects and unreachable objects

PROMOTED new and surviving objects promoted in place, from- and gray (if in queue), black (if
objects replica copies, to-space marked), or white (otherwise)

and unreachable objects
REPLICA no objects replica copies to-space gray (if in queue) or black
FREE no objects no objects - -

Table 1: Description of Page Status.

accuracy with which an appropriate page is chosen by the
allocator.

For example, a large object heap managed using a mark-
sweep collector is a set of pages for which the residency is
predicted to be high. Thus pages in the large object heap
will always be promoted in place. Recall that rather than
segregating large objects into a separate set of pages, we
observe that pages containing large objects should be pro-
moted in place wherever they reside. This avoids the need
to set aside heap space for large objects. Integrating large
and small objects on a single set of pages also allows the
collector to use small objects to fill the gaps between large
ones.

Other properties derived from the point of allocation can
also be used in attempts to make static residency predictions
come true. Unfortunately, none of these properties can ac-
count for changes in the behavior of the mutator over time.
While these “syntactic” properties may be good predictors
of residency for pages containing young objects, runtime in-
formation about residency offers better predictions in the
long run.2

4.3 Age
Generational collectors assume that most objects will die

young. To take advantage of this assumption, they group
young objects together so that the residency of the nursery
will be low. It follows as a corollary that objects in the
nursery should be evacuated.

However, generational collectors often defer to other pre-
dictors of residency in cases where age is not strongly cor-
related with expected lifetime. For example, many genera-
tional collectors pretenure larger objects [29, 9] in part be-
cause allocating large reachable objects in the nursery would
violate the assumption that the residency of the nursery is
low. The same is true for other forms of pretenuring based
on profiling data [12, 5]. Since they assume that the nurs-
ery is sparsely populated, these generational collectors take
steps to ensure that no long-lived objects reside there. Thus
young objects are not treated uniformly. These collectors
use age as a guide only when it is assured to be a good
predictor of residency.

While it may be reasonable to assume that many young
objects are unreachable, it is not safe to assume that most
old objects are still live. As objects become older, their age
offers less information about their expected lifetimes [18].

2One exception to this claim may be the case of immortal
objects, those objects that are statically known to survive
forever.

In particular, age does not give any indication of when old
objects should be “demoted.”

4.4 Poor Predictions
If any of these predictors yield inaccurate results then pro-

moted pages will contain few reachable objects and the heap
will become fragmented. By using historical measurements
to predict residency, our collector gracefully recovers from
these mistakes.

Even when the collector uses inaccurate predictions to
promote sparsely populated pages, it measures the true res-
idency of each page while scanning the heap. Pages with few
reachable objects will then be evacuated during the subse-
quent collection. In the extreme case, poor residency pre-
dictions will prevent the recovery of any usable space, and
collector will be invoked again immediately. In this case, the
first collection serves to correct the inaccurate predictions,
while the second uses the new measurements to reorganize
the heap. Thus our collector only uses a second traversal
to measure page residency in cases where its predictions are
wrong.

In addition, since the true residency of each page is known
at the end of a collection, unused space can immediately be
reclaimed during the allocation phase and used to satisfy
mutator requests.

5. A DYNAMIC HYBRID ALGORITHM
Our hybrid algorithm implements the full range of config-

urations shown in Figure 1. It is independent of the heuristic
used to predict residency and parameterized by the evacua-
tion and allocation thresholds.

The behavior of a tracing collector is largely determined
by the actions it takes when traversing objects and by the
way it satisfies allocation requests. All tracing collectors
must distinguish between white, gray, and black objects,3

but each one may maintain this distinction using a differ-
ent data structure. Our hybrid collector takes advantage
of the common structures found in both copying and non-
copying collectors when possible but occasionally maintains
separate structures for the sake of efficiency. Despite this,
our algorithm admits a simple description that is faithful to
our implementation.

As in Bartlett’s presentation of mostly copying collection,
our collector first divides the heap into pages.4 All pages are
initially designated as free pages. We describe three other
possibilities for the status of each page in Table 1. First,

3We use the standard tri-color abstraction [16].
4Our implementation uses pages of 4 kB.

evacuated pages form part of the from-space, and any reach-
able objects on an evacuated page will be copied during col-
lection. All evacuated pages will be reclaimed at the end of
collection. Second, promoted pages contain objects that will
be promoted in place. These pages may contain white, gray,
and black objects. Because there are no replicas associated
with objects that are promoted in place, promoted pages
are part of both the from- and to-spaces. Finally, replica
pages contain replicas created during collection (with one
exception described below). They form the remainder of
the to-space.

The page table stores both the status and the residency
of each page. Our collector maintains the page table sep-
arately from the data associated with each page. To allow
the set of pages of any status to be enumerated and manip-
ulated efficiently, they are stored in doubly-linked lists, one
for each possible status. This list structure is also stored in
the page table. Each page table entry consumes 16 bytes in
our implementation.

5.1 Collection
Collection is initiated when the remaining amount of free

space in the heap is equal to the total size of all objects
that may be evacuated during collection. For example, a
mark-sweep collector begins a new collection when no free
space remains, since no objects will be evacuated. For a
semi-space collector, collection begins when half of the heap
is occupied, since all objects may be evacuated (if they are
reachable).

Initial Phase. The collector begins by enumerating the
root set. To avoid prematurely evacuating a pinned object,
it must consider all pinned roots before performing any evac-
uation. Pages containing the referents of pinned roots are
promoted in place, and these referents are shaded. Then the
collector enumerates all remaining roots and shades their
referents. The collection technique for each remaining page
follows from the page status and was determined during the
preceding collection or allocation phase. Because pinned
roots never increase the number of evacuated objects, the
collector is still guaranteed to have sufficient space to com-
plete the current collection.

Tracing Phase.Once the collection technique for each page
has been fixed, the collector traces the memory graph by
advancing the gray frontier. When a shaded object resides
on a promoted page, it is promoted in place; shaded objects
on evacuated pages are (as the name suggests) evacuated.

To maintain the set of gray objects efficiently, our hybrid
collector uses two different data structures. The mark queue
holds references to gray objects that reside on promoted
pages. A mark bit associated with each object on a promoted
page is set to ensure that each object is added to the mark
queue exactly once (and that cycles are handled correctly).
Each time a mark bit is set, the page residency is updated
to reflect the size of the shaded object.

It is possible to use a mark queue to store the set of evac-
uated gray objects. However, this set can be managed more
efficiently in a semi-space collector using a pair of addresses,
since these evacuated objects will reside in a contiguous por-
tion of the heap [11]. Unlike a semi-space collector, not all
evacuated pages may be adjacent to each other in our hy-
brid collector. The Cheney queue holds pairs of addresses

that delimit regions of gray replica objects. When a pair of
addresses is removed from the queue, every object residing
between the pair of addresses is traced. Evacuated objects
are assigned forwarding pointers to ensure that each object
is copied at most once. In these aspects of our implementa-
tion, we follow the work Smith and Morrisett [26].

Replica copies may reside on either replica pages or the
unoccupied parts of promoted pages. In the latter case,
replicas should be marked, regardless of whether they are
added to the mark queue or the Cheney queue, so that they
will be preserved through the sweep phase.

In summary, an object is gray if it appears in either the
mark queue or between a pair of addresses in the Cheney
queue. Black objects are those that do not appear in either
queue but reside on promoted pages and are marked, or
simply reside on replica pages. All remaining objects are
white.

Sweep Phase.When no gray objects remain, all objects
on replica pages are black by definition. Evacuated pages
contain only white objects. Promoted pages, however, will
contain both black and white objects. Each of these pages
must be swept, clearing the mark bit from each black object.
The collector also performs an additional task during the
sweep phase: for pages whose residency is known to be low,
it coalesces adjacent white objects to form free gaps. These
gaps are threaded together to form the gap list and will be
reused during allocation or the next collection.

Final Phase.At the end of each collection, the collector
must flip the roles of the from- and to-spaces. All evacu-
ated pages may be recycled in bulk and are now considered
free pages. For each promoted and replica page, the collec-
tor considers the residency measured during collection and
uses this value to predict the residency at the beginning of
the next collection. Pages whose predicted residency is less
than or equal to the evacuation threshold are designated as
evacuated pages. The rest will be promoted.

One final point must be considered in determining the
collection technique of each page. An evacuated page cannot
be used to hold replicas while it is being evacuated. Thus
we have one final criterion for in-place promotion: pages
with free gaps that will be used to hold replicas in the next
collection should also be promoted in place.

For each page that will be evacuated in the next collection,
the collector must reserve adequate space to hold replicas
created during evacuation. For this purpose, the collector
computes the total of size of all objects to be evacuated by
computing the sum of the measured residencies of evacuated
pages.

The free space available to hold future allocations and
replicas is given by the total size of all free pages, plus any
space available in the gap list. From this, the collector sub-
tracts the total size of objects to be evacuated. The remain-
ing quantity is the total unreserved space. This quantity will
be used during allocation to trigger the next collection.

5.2 Allocation
Allocation requests may be satisfied in two ways. Free

pages can be used to satisfy requests using a pointer-bumping
technique (as in a semi-space collector). The allocator main-
tains a pair of addresses, the allocation pointer and the al-
location limit, to delimit the block of memory that will be
considered in fulfilling the next request.

0

1

2

3

4

5

6

7

8

9

10

200 300 400 500 600 700

heap size (kB)

(a) ray-tracer

Mark-sweep

333333333333333
3

3

3
Semi-space

++++++++++++++
+

+

+

+
Hybrid (re = 90/ra = 90)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 200 300 400 500 600 700

heap size (kB)

(b) splay trees

Mark-sweep

333333333
3333

3
3

3

3

3

3
Semi-space

+++++++++
++

+
+

+

+

+
Hybrid (re = 90/ra = 90)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

40 60 80 100 120 140

heap size (MB)

(c) GCBench

Mark-sweep

3

33

33

3
3

3
33

33
33

333
33

3

3333

3
Semi-space

+

++

+

+++
++

+++
++

+++++++
+++

+
Hybrid (re = 90/ra = 90)

0

5

10

15

20

25

30

35

40

45

15 20 25 30 35 40 45 50 55 60 65

heap size (MB)

(d) GCOld

Mark-sweep

3
33333333333333333333333

3
Semi-space

+

+

+

+
+

++++++++++++++++++

+
Hybrid (re = 90/ra = 90)

Figure 2: Collection Overhead vs. Heap Size. The vertical axis shows the total collection time measured in
seconds. The same hybrid configuration is used in all cases (re = 90% and ra = 90%). The jagged curve of
mark-sweep collector in the GCBench application is caused by the significant amount of garbage and strong
correlation among object lifetimes in that application.

Allocation requests can also be satisfied using the free
gaps identified during collection. Our implementation uses
a first-fit approach to allocate space from the gap list. Once
the first sufficiently large gap is found and removed from
the list, the allocation pointer and allocation limit are set
to delimit that gap. The request is fulfilled and allocation
continues until the gap is exhausted. While other allocation
techniques are compatible with our algorithm, this technique
allows us to use the same inlined allocation code for both
free pages and the gap list. Our collector prefers to use the
gap list to satisfy requests and uses free pages only if the
gap list is empty.

As each block of free space is designated for allocation,
either from a free page or a free gap, the collector consid-
ers whether or not that block will be evacuated in the next
collection (using the predicted residency of the page). If
it will be promoted in place then the remaining unreserved
space is decreased by the size of the block; if the page will
be evacuated, then it must be decreased by twice the size of
the block. When the remaining amount of unreserved space
reaches zero, a new collection is initiated. In either case, if
the block resides on a page that was removed from the set
of free pages, then the page is added to either the set of pro-
moted pages or the set of evacuated pages, as appropriate.

Finally, large objects are always allocated by choosing a
set of adjacent free pages with enough space to satisfy the
request, and pages containing large objects will always be
promoted during collection.

6. EMPIRICAL RESULTS
We now describe a series of experiments to demonstrate

that our hybrid collector provides consistent performance
across a range of applications and configurations. In prac-
tice, we expect that predicted residency would be used in
combination with a form of generational or incremental col-
lection (as we will discuss along with other related and future
work below). However, to better understand our technique,
we consider it in isolation. Because our collector makes de-
cisions based on the layout of objects in the heap, a single
configuration performs well for several different applications
and heap sizes. We also show that the performance of the
collector is relatively insensitive to changes in the allocation
and evacuation thresholds.

We have implemented our collector as part of the Shared
Source Common Language Infrastructure (Rotor), a com-
piler and runtime implementation for C# [19] that requires
support for object pinning. We perform our experiments on
an Intel 1.8 GHz Pentium 4 with one GB of physical mem-
ory running Microsoft Windows XP Professional. For time
measurements, we report the average of two runs.

We use four applications in our experiments; all are mem-
ory intensive. The first benchmark, ported from the Java-
Grande benchmark suite, renders a three-dimensional scene
containing 64 spheres. While the original benchmark sup-
ports multi-threaded execution, we use a single-threaded
version for our tests. Our measurements show the results
running with size “A” (N = 150).

The second application is an artificial benchmark based
on truncated splay trees. This application provides a re-
alistic, yet difficult, case for our collector. Random nodes
are inserted repeatedly into a tree, and after each insertion,
the tree is rebalanced using splay operations and truncated
at a fixed depth. The resulting distribution of object life-

times follows a log-normal curve: most objects die young,
but some live to an intermediate age, and a few live for a
long period of time. More importantly for our collector,
long-lived objects are distributed throughout the heap and
potentially introduce fragmentation. Nodes also vary in size.
Trees are truncated at a depth of 30 in our experiments.

The third and fourth applications, GCBench and GCOld,
are both originally Java benchmarks and have been ported
to C# by the authors. Hans Böhm developed the Java ver-
sion of GCBench, and David Detlefs wrote the original ver-
sion of GCOld. Both of these benchmarks build large tree
structures, though each has a distinct object lifetime distri-
bution. For GCOld, we use the following parameter values:
live data size is 8, work is 1, short-to-long ratio is 32, pointer
mutation rate is 2, and steps is 1000. For an explanation of
these parameters, we refer the reader to the original author’s
web site [14]. The C# versions of all four benchmarks are
available on the first author’s web site.5

6.1 Heap Size
Figure 2 shows the total time consumed during collection

as a function of the heap size. Heap size is the total space
available to the collector, regardless of how that space is
presented to the mutator.

As expected, the mark-sweep collector yields lower over-
heads for small heaps. The semi-space copying collector
requires more space and cannot satisfy allocation requests
as the size of the heap approaches twice the amount of live
data. However, when there is sufficient space and a signifi-
cant amount of garbage, as in the GCBench application, the
copying collector yields better performance. (We also expect
the mutator to achieve better locality of reference in the
presence of the copying collector, though we do not measure
it here.) While the semi-space collector performs more col-
lections, each collection is much shorter. The jagged shape
of the mark-sweep plot for GCBench is caused by the signif-
icant amount of garbage and the fact that objects become
unreachable in large groups. As the heap becomes larger,
more time is required for the sweep phase; when there is
enough space that fewer collections are required, there is a
sudden drop in collector overhead.

In these measurements, the hybrid collector evacuates data
from pages whose predicted residency is less than or equal to
90% (re = 90%). Pages with a measured residency less than
or equal to than 90% are used for allocation (ra = 90%). For
brevity, we refer to this configuration as the “90/90 hybrid.”

By optimistically promoting dense pages in place, the hy-
brid collector achieves lower overheads than the semi-space
collector for smaller heaps and satisfies allocation requests
that the pure copying collector cannot. In applications such
as GCBench where there are few dense pages, however, it
more closely follows the performance of the semi-space col-
lector.

6.2 Configuration Thresholds
Our algorithm requires two new configuration parameters:

the evacuation and allocation thresholds. One might expect
this to place a greater burden on the application program-
mer to tune the collector to match the behavior of the mu-
tator. However, our hybrid collector is relatively insensitive
to changes in the configuration shown in the previous exper-
iment.

5http://www.cs.cmu.edu/~spoons/gc/benchmarks.html

-10

-5

0

5

10

15 20 25 30 35 40 45 50 55 60 65

%
d
iff

er
en

ce
in

to
ta

l
g
c

ti
m

e

heap size (MB)

re = 90/ra = 90
re = 90/ra = 82
re = 82/ra = 90
re = 90/ra = 98
re = 98/ra = 90
re = 98/ra = 98
re = 82/ra = 82

Figure 3: Overhead for Different Thresholds. The
difference in overhead of each configuration is given
as a percentage of the overhead of the re = 90/ra = 90
hybrid. In each case, the margin is small compared
to the performance differences shown in Figure 2.
This experiment uses the GCOld benchmark.

Figure 3 shows the difference in overhead for six other
configurations running the GCOld benchmark as a percent-
age of the overhead of the 90/90 hybrid that appeared in
Figure 2. We use the same heap sizes as in the previous
experiment. Though there is some variation in performance
among the different configurations, the margin is less than
8% of the overhead. This is relatively small compared to the
differences in performance between the 90/90 hybrid and the
semi-space collector (almost 250% for small heaps).

6.3 Cost of Allocation
While our collector does not need to be tuned precisely

to the behavior of each application, the evacuation and allo-
cation thresholds can be used to meet specific performance
requirements expressed by the application. For example, the
allocation threshold determines the speed with which alloca-
tion requests can be satisfied. If the allocation threshold is
zero, then only empty pages will be used to fulfill allocation
requests, and the cost of allocation will be low. If the allo-
cation threshold is high, then the collector will add unused
gaps on densely populated pages to the gap list, and the
allocator may need to consider many gaps before it finds
one large enough to satisfy the current request. In some
cases, no gap will be large enough, and a collection must be
performed.

Figure 4 shows the average number of entries in the gap
list that must be considered to fulfill a single request while
running the splay tree benchmark with a heap of 256 kB.
As the allocation threshold increases, so does the number
of gaps that must be considered by the allocator. For this
application, at most 1.13 gaps must be considered, on av-
erage, to satisfy a given allocation request. The evacuation

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

0 10 20 30 40 50 60 70 80 90 100

av
er

a
g
e

#
o
f

g
a
p
s

co
n
si

d
er

ed

ra (%)

re = 0
re = 20
re = 40
re = 60
re = 80
re = 100

Figure 4: Cost of Allocation. The vertical axis shows
the average number of gap list entries that must be
considered to fulfill a single request as a function
of the allocation threshold ra. The number of gaps
considered is largely independent of the evacuation
threshold re (except when re = 100%). This experi-
ment uses the splay tree benchmark.

threshold re has no significant impact on the time required
to satisfy an allocation request (except when all fragmenta-
tion is eliminated during collection).

7. RELATED WORK
Bartlett’s mostly copying collector [3, 4] supports ambigu-

ous roots and reduces fragmentation by evacuating objects
that are not referenced by registers or the cells in call stack.
Rather than marking objects on promoted pages, Bartlett’s
collector preserves all objects on a promoted page whether
or not they are reachable. This avoids the extra space re-
quired to store mark bits, but results in the retention of
unreachable objects.

Smith and Morrisett [26] extend Bartlett’s algorithm to
support arbitrary “conservative” objects, not just roots. They
improve performance by marking reachable objects on pro-
moted pages and thus reducing false retention. Despite this,
Smith and Morrisett’s collector does not allocate new ob-
jects using the space previously occupied by unmarked ob-
jects, nor does it measure residency to improve performance.

Mark-copy collection [25] addresses some of the perfor-
mance tradeoffs of copying and non-copying collection. Sachin-
dran and Moss extend copying generational collection by
dividing the older generation into a set of ordered windows
and introducing a sweep phase to record each pointer that
crosses from a “greater” window to a “lesser” window. All
objects are evacuated in mark-copy collection, but since the
lowest occupied window may be collected independently of
the remaining windows, the space in this window may be
reclaimed during collection and used while evacuating later
windows. Their collector also measures the residency of each

window during the sweep phase to determine the largest set
of windows that may be evacuated simultaneously.

Lang and Dupont [21] describe several related hybrid col-
lectors. In one case, the heap is divided into pages. During
each collection, one page is reserved as the to-space, one is
designated as the from-space, and reachable objects resid-
ing on the from-space page are evacuated to the to-space.
The remaining pages are promoted in place. The choice of
from-space rotates with each collection, ensuring that the
entire heap will be compacted eventually. In another case,
the size of the from- and to-spaces may vary, but each must
occupy a contiguous portion of memory. They speculate
that the amount of fragmentation may also be used to guide
the choice of the from-space, but do not elaborate on how
fragmentation is to be determined. Allocation is performed
using a free list, and all unused gaps (outside of the to-space)
are used to satisfy mutator requests, regardless of the resi-
dency of the page containing each gap.

The garbage-first collector, presented by Detlefs et al.
[15], is a soft-real time collector that uses residency (among
other factors) to estimate the cost of evacuating parts of
the heap, called regions. Their collector chooses a set of
regions to be evacuated based on these estimates with the
goal of achieving predictable pause times. Instead of pro-
moting some regions in place, it simply avoids evacuating
objects from them. Its predictions of residency are based on
the amount of reachable data discovered during a separate
marking process as well as the survival rates of objects in
other regions. Their collector uses only empty regions for
allocation.

Our work is most closely related to recent work by Bacon,
Cheng, and Rajan [2, 1] in which they describe a real-time
mostly non-copying collector and provide a detailed anal-
ysis of its usage of time and space. Because we initially
focused on keeping allocation costs low, copying collection
was a natural starting point. On the other hand, Bacon
et al. were concerned with space overhead and thus began
with a non-copying collector. This leads to a different set
of design choices; for example, they use segregated free lists
instead of a pointer-bumping allocator. However, their col-
lector also uses residency to determine which objects should
be relocated and to balance the tradeoff between fragmen-
tation and space overhead. Instead of predicting page resi-
dency, their collector measures it during an additional sweep
phase.

8. EXTENSIONS AND FUTURE WORK
In this presentation, we have focused on collector through-

put. Though we do not report on it here, we use replicating
collection [24] to support small upper bounds on pause times
and consistent mutator utilization.

For the most part, we find that mostly copying collec-
tion does not impinge on the implementation of a replicat-
ing collector. However, an unbounded number of promoted
pages could result in an unbounded stall of mutator execu-
tion. Our collector uses a from-space invariant, restricting
the mutator to manipulate only those objects that reside
in from-space. Because promoted pages are part of both
the to- and from-spaces, pointers from objects on promoted
pages to objects on evacuated pages cannot be updated in-
crementally. Instead, they must be flipped atomically at the
end of a complete collection.

We accept larger latencies when many objects are pinned,
but limit the number of pages that are promoted because of
high predicted residency, achieving better latency at the cost
of throughput. Another possible solution is to use a more
flexible invariant, for example, a Brooks-style invariant [8] as
is used by Bacon et al. [1]. We have not yet investigated this
alternative and continue to study the interactions of mostly
copying and incremental collection. We also plan to extend
our algorithm to support concurrent and parallel collection.

9. CONCLUSIONS
We have presented a tracing garbage collector that uni-

formly integrates the features of both copying and non-
copying collection. Our collector uses residency to dynami-
cally balance the tradeoffs between these two types of trac-
ing collection. Instead of consuming additional resources to
measure residency, it uses predicted residency to make deci-
sions about whether to promote pages or to evacuate them.
To recover from inaccurate predictions, it also uses sparsely
populated pages to fulfill allocation requests.

We have shown that many existing hybrid algorithms can
be viewed in the light of their assumptions about residency.
We hope that some insight can be drawn from these hybrids
to improve the residency predictions of our collector.

Acknowledgments
We thank the anonymous referees for their helpful and de-
tailed comments.

10. REFERENCES
[1] D. F. Bacon, P. Cheng, and V. T. Rajan. Controlling

fragmentation and space consumption in the
metronome, a real-time garbage collector for java. In
LCTES ’03: Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for
embedded systems, pages 81–92. ACM Press, 2003.

[2] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time
garbage collector with low overhead and consistent
utilization. In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 285–298. ACM Press,
2003.

[3] J. F. Bartlett. Compacting garbage collection with
ambiguous roots. Technical Report 88/2, DEC
Western Research Laboratory, February 1988.

[4] J. F. Bartlett. A generational compacting garbage
collector for C++. In ECOOP/OOPSLA Workshop
on Garbage Collection in Object-Oriented Systems,
Ottawa, Canada, 1990.

[5] S. M. Blackburn, S. Singhai, M. Hertz, K. S.
McKinely, and J. E. B. Moss. Pretenuring for java. In
Proceedings of the 16th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages
342–352. ACM Press, 2001.

[6] G. E. Blelloch and P. Cheng. On bounding time and
space for multiprocessor garbage collection. In
Proceedings of the ACM SIGPLAN ’99 Conference on
Programming Language Design and Implementation
(PLDI), pages 104–117. ACM Press, 1999.

[7] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Softw. Pract. Exper.,
18(9):807–820, 1988.

[8] R. A. Brooks. Trading data space for reduced time
and code space in real-time garbage collection on
stock hardware. In Proceedings of the 1984 ACM
Symposium on LISP and functional programming,
pages 256–262. ACM Press, 1984.

[9] P. J. Caudill and A. Wirfs-Brock. A third generation
smalltalk-80 implementation. In Conference
proceedings on Object-oriented programming systems,
languages and applications, pages 119–130. ACM
Press, 1986.

[10] M. Chakravarty et al. The Haskell 98 Foreign
Function Interface 1.0.
http://www.cse.unsw.edu.au/~chak/haskell/ffi/.
Last viewed April 14, 2005.

[11] C. J. Cheney. A nonrecursive list compacting
algorithm. Commun. ACM, 13(11):677–678, 1970.

[12] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. In
Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and
Implementation (PLDI), pages 162–173. ACM Press,
1998.

[13] W. D. Clinger and L. T. Hansen. Generational
garbage collection and the radioactive decay model. In
PLDI ’97: Proceedings of the ACM SIGPLAN 1997
conference on Programming language design and
implementation, pages 97–108. ACM Press, 1997.

[14] D. Detlefs. GCOld: a benchmark to stress
old-generation collection.
http://www.experimentalstuff.com/Technologies/.
Last viewed April 14, 2005.

[15] D. Detlefs, C. Flood, S. Heller, and T. Printezis.
Garbage-first garbage collection. In ISMM ’04:
Proceedings of the 4th international symposium on
Memory management, pages 37–48. ACM Press, 2004.

[16] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage
collection: an exercise in cooperation. Commun.
ACM, 21(11):966–975, 1978.

[17] R. R. Fenichel and J. C. Yochelson. A lisp
garbage-collector for virtual-memory computer
systems. Commun. ACM, 12(11):611–612, 1969.

[18] B. Hayes. Using key object opportunism to collect old
objects. In OOPSLA ’91: Conference proceedings on
Object-oriented programming systems, languages, and
applications, pages 33–46. ACM Press, 1991.

[19] A. Hejlsberg, S. Wiltamuth, and P. Golde. The C#
Programming Language. Addison-Wesley, 2003.

[20] R. Jones and R. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. John
Wiley & Sons, 1996.

[21] B. Lang and F. Dupont. Incremental incrementally
compacting garbage collection. In SIGPLAN ’87:
Papers of the Symposium on Interpreters and
interpretive techniques, pages 253–263, New York, NY,
USA, 1987. ACM Press.

[22] H. Lieberman and C. Hewitt. A real-time garbage
collector based on the lifetimes of objects.
Communications of the ACM, 26(6):419–429, June
1983.

[23] J. L. McCarthy. Recursive functions of symbolic
expressions and their computation by machine, part i.
Communications of the ACM, 3(4):184–195, 1960.

[24] S. Nettles, J. O’Toole, and D. Pierce.
Replication-based incremental copying collection. In
Proceedings of the International Workshop on Memory
Management, pages 357–364. Springer-Verlag, 1992.

[25] N. Sachindran and J. E. B. Moss. Mark-copy: fast
copying gc with less space overhead. In Proceedings of
the 18th ACM SIGPLAN conference on
Object-Oriented Programing, Systems, Languages, and
Applications, pages 326–343. ACM Press, 2003.

[26] F. Smith and G. Morrisett. Comparing mostly-copying
and mark-sweep conservative collection. ACM
SIGPLAN Notices, 34(3):68–78, 1999.

[27] Sun Microsystems, Inc. JNI - Java Native Interface.
http://java.sun.com/j2se/1.4.1/docs/guide/jni/.
Last viewed April 14, 2005.

[28] D. Ungar. Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. In
Proceedings of the first ACM SIGSOFT/SIGPLAN
software engineering symposium on Practical software
development environments, pages 157–167. ACM
Press, 1984.

[29] D. Ungar and F. Jackson. Tenuring policies for
generation-based storage reclamation. In Conference
proceedings on Object-oriented programming systems,
languages and applications, pages 1–17. ACM Press,
1988.

