
Handling Advertisements of Unknown Quality
in Search Advertising

Sandeep Pandey Christopher Olston
Carnegie Mellon University Yahoo! Research and Carnegie Mellon University

spandey@cs.cmu.edu olston@yahoo-inc.com

Abstract

We consider how a search engine should select advertisements to display
with search results, in order to maximize its revenue. Under the standard
“pay-per-click” arrangement, revenue depends on how well the displayed
advertisements appeal to users. The main difficulty stems from new ad-
vertisements whose degree of appeal has yet to be determined. Often the
only reliable way of determining appeal is exploration via display to users,
which detracts from exploitation of other advertisements known to have
high appeal. Budget constraints and finite advertisement lifetimes make it
necessary to explore as well as exploit.
In this paper we study the tradeoff between exploration and exploitation,
modeling advertisement placement as a multi-armed bandit problem. We
extend traditional bandit formulations to account for budget constraints
that occur in search engine advertising markets, and derive theoretical
bounds on the performance of a family of algorithms. We measure em-
pirical performance via extensive experiments over real-world data.

1 Introduction

Search engines are invaluable tools for society. Their operation is supported in large part
through advertising revenue. Under the standard “pay-per-click” arrangement, search en-
gines earn revenue by displaying appealing advertisements that attract user clicks. Users
benefit as well from this arrangement, especially when searching for commercial goods or
services.

Successful advertisement placement relies on knowing the appeal or “clickability” of adver-
tisements. The main difficulty is that the appeal of new advertisements that have not yet
been “vetted” by users can be difficult to estimate. In this paper we study the problem of
placing advertisements to maximize a search engine’s revenue, in the presence of uncertainty
about appeal.

1.1 The Advertisement Problem

Consider the following advertisement problem [9], illustrated in Figure 1. There are m
advertisers A1, A2 . . . Am who wish to advertise on a search engine. The search engine runs
a large auction where each advertiser submits its bids to the search engine for the query
phrases in which it is interested. Advertiser Ai submits advertisement ai,j to target query
phrase Qj , and promises to pay bi,j amount of money for each click on this advertisement,
where bi,j is Ai’s bid for advertisement ai,j . Advertiser Ai can also specify a daily budget (di)
that is the total amount of money it is willing to pay for the clicks on its advertisements
in a day. Given a user search query on phrase Qj , the search engine selects a constant
number C ≥ 1 of advertisements from the candidate set of advertisements {a∗,j}, targeted
to Qj . The objective in selecting advertisements is to maximize the search engine’s total
daily revenue. The arrival sequence of user queries is not known in advance. For now we
assume that each day a new set of advertisements is given to the search engine and the set
remains fixed through out the day; we drop both of these assumptions later in Section 4.

Budgets

a

A 2

A 3

A 4

1,3a

5,4a

5,5a

2,1a

3,2a

4,4a

3,4a

A 1

A 5

d1

d2

d3

d4

d5

Q
1

Q
2

Q
3

Q
4

Q
5

QueryAdsAdvertisers
phrases

1,1

Figure 1: Advertiser and query model.

for all ads

VI

constraints

I III V

IVII

general CTR, general CTR,

no budget
constraints

GREEDYMSVV

ratio=1−1/e ratio=1/2

budget

GREEDY GREEDY

ratio=1ratio=1

this paper

CTR known CTR unknown
CTR = 1

this paper

Figure 2: Problem variants.

High revenue is achieved by displaying advertisements that have high bids as well as high
likelihood of being clicked on by users. Formally, the click-through rate (CTR) ci,j of
advertisement ai,j is the probability of a user to click on advertisement ai,j given that the
advertisement was displayed to the user for query phrase Qj . In the absence of budget
constraints, revenue is maximized by displaying advertisements with the highest ci,j · bi,j

value. The work of [9] showed how to maximize revenue in the presence of budget constraints,
but under the assumption that all CTRs are known in advance. In this paper we tackle the
more difficult but realistic problem of maximizing advertisement revenue when CTRs are
not necessarily known at the outset, and must be learned on the fly.

We show the space of problem variants (along with the best known advertisement policies)
in Figure 2. GREEDY refers to selection of advertisements according to expected revenue
(i.e., ci,j · bi,j). In Cells I and III GREEDY performs as well as the optimal policy, where the
optimal policy also knows the arrival sequence of queries in advance. We write “ratio=1”
in Figure 2 to indicate that GREEDY has the competitive ratio of 1. For Cells II and IV
the greedy policy is not optimal, but is nevertheless 1/2 competitive. An alternative policy
for Cell II was given in [9], which we refer to as MSVV; it achieves a competitive ratio
of 1 − 1/e. In this paper we give the first policies for Cells V and VI, where we must
choose which advertisements to display while simultaneously estimating click-through rates
of advertisements.

1.2 Exploration/Exploitation Tradeoff

The main issue we face while addressing Cells V and VI is to balance the explo-
ration/exploitation tradeoff. To maximize short-term revenue, the search engine should
exploit its current, imperfect CTR estimates by displaying advertisements whose estimated
CTRs are large. On the other hand, to maximize long-term revenue, the search engine
needs to explore, i.e., identify which advertisements have the largest CTRs. This kind of
exploration entails displaying advertisements whose current CTR estimates are of low confi-
dence, which inevitably leads to displaying some low-CTR ads in the short-term. This kind
of tradeoff between exploration and exploitation shows up often in practice, e.g., in clinical
trials, and has been extensively studied in the context of the multi-armed bandit problem
[4].

In this paper we draw upon and extend the existing bandit literature to solve the advertise-
ment problem in the case of unknown CTR. In particular, first in Section 3 we show that the
unbudgeted variant of the problem (Cell V in Figure 2) is an instance of the multi-armed
bandit problem. Then, in Section 4 we introduce a new kind of bandit problem that we
termed the budgeted multi-armed multi-bandit problem (BMMP), and show that the bud-
geted unknown-CTR advertisement problem (Cell VI) is an instance of BMMP. We propose
policies for BMMP and give performance bounds. We evaluate our policies empirically over
real-world data in Section 5. In Appendix A we show how to extend our policies to address
various practical considerations, e.g., exploiting any prior information available about the
CTRs of ads, permitting advertisers to submit and revoke advertisements at any time, not
just at day boundaries.

2 Related Work
We have already discussed the work of [9], which addresses the advertisement problem under
the assumption that CTRs are known. There has not been much published work on esti-
mating CTRs. Reference [8] discusses how contextual information such as user demographic
or ad topic can be used to estimate CTRs, and makes connections to the recommender and
bandit problems, but stops short of presenting technical solutions. Some methods for esti-
mating CTRs are proposed in [6] with the focus of thwarting click fraud.

Reference [1] studies how to maximize user clicks on banner ads. The key problem ad-
dressed in [1] is to satisfy the contracts made with the advertisers in terms of the minimum
guaranteed number of impressions (as opposed to the budget constraints in our problem).
Reference [10] looks at the advertisement problem from an advertiser’s point of view, and
gives an algorithm for identifying the most profitable set of keywords for the advertiser.

3 Unbudgeted Unknown-CTR Advertisement Problem
In this section we address Cell V of Figure 2, where click-through rates are initially unknown
and budget constraints are absent (i.e., di = ∞ for all advertisers Ai). Our unbudgeted
problem is an instance of the multi-armed bandit problem [4], which is the following: we
have K arms where each arm has an associated reward and payoff probability. The payoff
probability is not known to us while the reward may or may not be known (both versions of
the bandit problem exist). With each invocation we activate exactly C ≤ K arms. 1 Each
activated arm then yields the associated reward with its payoff probability and nothing with
the remaining probability. The objective is to determine a policy for activating the arms so
as to maximize the total reward over some number of invocations.

To solve the unbudgeted unknown-CTR advertisement problem, we create a multi-armed
bandit problem instance for each query phrase Q, where ads targeted for the query phrase
are the arms, bid values are the rewards and CTRs are the payoff probabilities of the
bandit instance. Since there are no budget constraints, we can treat each query phrase
independently and solve each bandit instance in isolation. 2 The number of invocations for
a bandit instance is not known in advance because the number of queries of phrase Q in a
given day is not known in advance.

A variety of policies have been proposed for the bandit problem, e.g., [2, 3, 7], any of which
can be applied to our unbudgeted advertisement problem. The policies proposed in [3] are
particularly attractive because they have a known performance bound for any number of
invocations not known in advance (in our context the number of queries is not known a
priori). In the case of C = 1, the policies of [3] make O(ln n) number of mistakes, on
expectation, in n invocations (which is also the asymptotic lower bound on the number of
mistakes [7]). A mistake occurs when a suboptimal arm is chosen by a policy (the optimal
arm is the one with the highest expected reward).

We consider a specific policy from [3] called UCB and apply it to our problem (other policies
from [3] can also be used). UCB is proposed under a slightly different reward model; we adapt
it to our context to produce the following policy that we call MIX (for mixing exploration
with exploitation). We prove a performance bound of O(ln n) mistakes for MIX for any
C ≥ 1 in Appendix D.

Policy MIX :
Each time a query for phrase Qj arrives:

1. Display the C ads targeted for Qj that have the highest priority. The priority Pi,j

of ad ai,j is a function of its current CTR estimate (ĉi,j), its bid value (bi,j), the
number of times it has been displayed so far (ni,j), and the number of times phrase
Qj has been queried so far in the day (nj). Formally, priority Pi,j is defined as:

Pi,j =

{ (
ĉi,j +

√
2 ln nj

ni,j

)
· bi,j if ni,j > 0

∞ otherwise
1The conventional multi-armed bandit problem is defined for C = 1. We generalize it to any

C ≥ 1 in this paper.
2We assume CTRs to be independent of one another.

2. Monitor the clicks made by users and update the CTR estimates ĉi,j accordingly.
ĉi,j is the average click-through rate observed so far, i.e., the number of times ad
ai,j has been clicked on divided by the total number of times it has been displayed.

Policy MIX manages the exploration/exploitation tradeoff in the following way. The priority

function has two factors: an exploration factor
(√ 2 ln nj

ni,j

)
that diminishes with time, and

an exploitation factor (ĉi,j). Since ĉi,j can be estimated only when ni,j ≥ 1, the priority
value is set to ∞ for an ad which has never been displayed before.

Importantly, the MIX policy is practical to implement because it can be evaluated efficiently
using a single pass over the ads targeted for a query phrase. Furthermore, it incurs minimal
storage overhead because it keeps only three numbers (ĉi,j , ni,j and bi,j) with each ad and
one number (nj) with each query phrase.

4 Budgeted Unknown-CTR Advertisement Problem
We now turn to the more challenging case in which advertisers can specify daily budgets
(Cell VI of Figure 2). Recall from Section 3 that in the absence of budget constraints,
we were able to treat the bandit instance created for a query phrase independent of the
other bandit instances. However, budget constraints create dependencies between query
phrases targeted by an advertiser. To model this situation, we introduce a new kind of
bandit problem that we call Budgeted Multi-armed Multi-bandit Problem (BMMP), in
which multiple bandit instances are run in parallel under overarching budget constraints.
We derive generic policies for BMMP and give performance bounds.

4.1 Budgeted Multi-armed Multi-bandit Problem
BMMP consists of a finite set of multi-armed bandit instances, B = {B1, B2 . . . B|B|}. Each
bandit instance Bi has a finite number of arms and associated rewards and payoff probabil-
ities as described in Section 3. In BMMP each arm also has an associated type. Each type
Ti ∈ T has budget di ∈ [0,∞] which specifies the maximum amount of reward that can be
generated by activating all the arms of that type. Once the specified budget is reached for
a type, the corresponding arms can still be activated but no further reward is earned.

With each invocation of the bandit system, one bandit instance from B is invoked; the policy
has no control over which bandit instance is invoked. Then the policy activates C arms of
the invoked bandit instance, and the activated arms generate some (possibly zero) total
reward.

It is easy to see that the budgeted unknown-CTR advertisement problem is an instance
of BMMP. Each query phrase acts as a bandit instance and the ads targeted for it act as
bandit arms, as described in Section 3. Each advertiser defines a unique type of arms and
gives a budget constraint for that type; all ads submitted by an advertiser belong to the
type defined by it. When a query is submitted by a user, the corresponding bandit instance
is invoked.

We now show how to derive a policy for BMMP given as input a policy POL for the regular
multi-armed bandit problem such as one of the policies from [3]. The derived policy, denoted
by BPOL (Budget-aware POL), is as follows:

• Run |B| instances of POL in parallel, denoted POL1,POL2, . . . POL|B|.
• Whenever bandit instance Bi is invoked:

1. Discard any arm(s) of Bi whose type’s budget is newly depleted, i.e., has
become depleted since the last invocation of Bi.

2. If one or more arms of Bi was discarded during step 1, restart POLi.
3. Let POLi decide which of the remaining arms of Bi to activate.

Observe that in the second step of BPOL, when POL is restarted, POL loses any state
it has built up, including any knowledge gained about the payoff probabilities of bandit
arms. Surprisingly, despite this seemingly imprudent behavior, we can still derive a good
performance bound for BPOL, provided that POL has certain properties, as we discuss in

the next section. In practice, since most bandit policies can take prior information about
the payoff probabilities as input, when restarting POL we can supply the previous payoff
probability estimates as the prior (as done in our experiments).

4.2 Performance Bound for BMMP Policies
Let S denote the sequence of bandit instances that are invoked, i.e., S =
{S(1), S(2) . . . S(N)} where S(n) denotes the index of the bandit instance invoked at the nth

invocation. We compare the performance of BPOL with that of the optimal policy, denoted
by OPT, where OPT has advance knowledge of S and the exact payoff probabilities of all
bandit instances.

We claim that bpol(N) ≥ opt(N)/2−O(f(N)) for any N , where bpol(N) and opt(N) denote
the total expected reward obtained after N invocations by BPOL and OPT, respectively, and
f(n) denotes the expected number of mistakes made by POL after n invocations of the the
regular multi-armed bandit problem (for UCB, f(n) is O(ln n) [3]). Our complete proof is
rather involved. Here we give a high-level outline of the proof (the complete proof is given
in Appendix C). For simplicity we focus on the C = 1 case; C ≥ 1 is a simple extension
thereof.

Since bandit arms generate rewards stochastically, it is not clear how we should compare
BPOL and OPT. For example, even if BPOL and OPT behave in exactly the same way
(activate the same arm on each bandit invocation), we cannot guarantee that both will have
the same total reward in the end. To enable meaningful comparison, we define a payoff
instance, denoted by I, such that I(i, n) denotes the reward generated by arm i of bandit
instance S(n) for invocation n in payoff instance I. The outcome of running BPOL or
OPT on a given payoff instance is deterministic because the rewards are fixed in the payoff
instance. Hence, we can compare BPOL and OPT on per payoff instance basis. Since each
payoff instance arises with a certain probability, denoted as P(I), by taking expectation
over all possible payoff instances of execution we can compare the expected performance of
BPOL and OPT.

Let us consider invocation n in payoff instance I. Let B(I, n) and O(I, n) denote the arms
of bandit instance S(n) activated under BPOL and OPT respectively. Based on the different
possibilities that can arise, we classify invocation n into one of three categories:

• Category 1: The arm activated by OPT, O(I, n), is of smaller or equal expected
reward in comparison to the arm activated by BPOL, B(I, n). The expected reward
of an arm is the product of its payoff probability and reward.

• Category 2: Arm O(I, n) is of greater expected reward than B(I, n), but O(I, n) is
not available for BPOL to activate at invocation n due to budget restrictions.

• Category 3: Arm O(I, n) is of greater expected reward than B(I, n) and both arms
O(I, n) and B(I, n) are available for BPOL to activate, but BPOL prefers to activate
B(I, n) over O(I, n).

Let us denote the invocations of category k (1, 2 or 3) by N k(I) for payoff instance I.
Let bpolk(N) and optk(N) denote the expected reward obtained during the invocations of
category k (1, 2 or 3) by BPOL and OPT respectively. In Appendix C we show that

bpolk(N) =
∑
I∈I

(
P(I) ·

∑
n∈Nk(I)

I(B(I, n), n)
)

Similarly,

optk(N) =
∑
I∈I

(
P(I) ·

∑
n∈Nk(I)

I(O(I, n), n)
)

Then for each k we bound optk(N) in terms of bpol(N). In Appendix C we provide proof
of each of the following bounds:

Lemma 1 opt1(N) ≤ bpol1(N).

Lemma 2 opt2(N) ≤ bpol(N) + (|T | · rmax), where |T | denotes the number of arm types
and rmax denotes the maximum reward.

Lemma 3 opt3(N) = O(f(N)).

From the above bounds we obtain our overall claim:

Theorem 1 bpol(N) ≥ opt(N)/2 − O(f(N)), where bpol(N) and opt(N) denote the total
expected reward obtained under BPOL and OPT respectively.

Proof:

opt(N)
= opt1(N) + opt2(N) + opt3(N)
≤ bpol1(N) + bpol(N) +

(
|T | · rmax

)
+ O(f(N))

≤ 2 · bpol(N) + O(f(N))

Hence, bpol(N) ≥ opt(N)/2−O(f(N)).

If we supply MIX (Section 3) as input to our generic BPOL framework, we obtain BMIX,
a policy for the budgeted unknown-CTR advertisement problem. Due to the way MIX
structures and maintains its internal state, it is not necessary to restart a MIX instance when
an advertiser’s budget is depleted in BMIX, as specified in the generic BPOL framework (the
exact steps of BMIX are given in Appendix B).

So far, for modeling purposes, we have assumed the search engine receives an entirely new
batch of advertisements each day. In reality, ads may persist over multiple days. With
BMIX, we can carry forward an ad’s CTR estimate (ĉi,j) and display count (ni,j) from day
to day until an ad is revoked, to avoid having to re-learn CTR’s from scratch each day. Of
course the daily budgets reset daily, regardless of how long each ad persists. In fact, with a
little care we can permit ads to be submitted and revoked at arbitrary times (not just at day
boundaries). We describe this extension, as well as how we can incorporate and leverage
prior beliefs about CTR’s, in Appendix A.

5 Experiments
From our general result of Section 4, we have a theoretical performance guarantee for BMIX.
In this section we study BMIX empirically. In particular, we compare it with the greedy pol-
icy proposed for the known-CTR advertisement problem (Cells 1-IV in Figure 2). GREEDY

displays the C ads targeted for a query phrase that have the highest
(
ĉi,j ·bi,j

)
values among

the ads whose advertisers have enough remaining budgets; to induce a minimal amount of
exploration, for an ad which has never been displayed before, GREEDY treats ĉi,j as ∞
(our policies do this as well). GREEDY is geared exclusively toward exploitation. Hence, by
comparing GREEDY with our policies, we can gauge the importance of exploration.

We also propose and evaluate the following variants of BMIX that we expect to perform well
in practice:
1. Varying the Exploration Factor. Internally, BMIX runs instances of MIX to select
which ads to display. As mentioned in Section 4, the priority function of MIX consists of an
exploration factor

(√ 2 ln nj

ni,j

)
and an exploitation factor (ci,j). In [3] it was shown empiri-

cally that the following heuristical exploitation factor performs well, despite the absence of
a known performance guarantee:√

ln nj

ni,j
·min

{1
4
, Vi,j(ni,j , nj)

}
where Vi,j(ni,j , nj) =

(
ĉi,j · (1− ĉi,j)

)
+

√
2 ln nj

ni,j

Substituting this expression in place of
√

2 ln nj

ni,j
in the priority function of BMIX gives us

a new (heuristical) policy we call BMIX-E.

2. Budget Throttling. It is shown in [9] that in the presence of budget constraints, it is
beneficial to display the ads of an advertiser less often as the advertiser’s remaining budget
decreases. In particular, they propose to multiply bids from advertiser Ai by the following
discount factor :

φ(d′i) = 1− e−d′
i/di

where d′i is the current remaining budget of advertiser Ai for the day and di is its total daily
budget. Following this idea we can replace bi,j by

(
φ(d′i) · bi,j

)
in the priority function of

BMIX, yielding a variant we call BMIX-T. Policy BMIX-ET refers to use of heuristics 1 and
2 together.

5.1 Experiment Setup

We evaluate advertisement policies by conducting simulations over real-world data. Our
data set consists of a sample of 85,000 query phrases selected at random from the Yahoo!
query log for the date of February 12, 2006. Since we have the frequency counts of these
query phrases but not the actual order, we ran the simulations multiple times with random
orderings of the query instances and report the average revenue in all our experiment results.
The total number of query instances is 2 million. For each query phrase we have the list
of advertisers interested in it and the ads submitted by them to Yahoo!. We also have the
budget constraints of the advertisers. Roughly 60% of the advertisers in our data set impose
daily budget constraints.

In our simulation, when an ad is displayed, we decide whether a click occurs by flipping a
coin weighted by the true CTR of the ad. Since true CTRs are not known to us (this is the
problem we are trying to solve!), we took the following approach to assign CTRs to ads:
from a larger set of Yahoo! ads we selected those ads that have been displayed more than
thousand times, and therefore we have highly accurate CTR estimates. We regarded the
distribution of these CTR estimates as the true CTR distribution. Then for each ad ai,j in
the dataset we sampled a random value from this distribution and assigned it as CTR ci,j

of the ad. (Although this method may introduce some skew compared with the (unknown)
true distribution, it is the best we could do short of serving live ads just for the purpose of
measuring CTRs).

We are now ready to present our results. Due to lack of space we consider a simple setting
here where the set of ads is fixed and no prior information about CTR is available. We
study the more general setting in Appendix A.

5.2 Exploration/Exploitation Tradeoff

We ran each of the policies for a time horizon of ten days; each policy carries over its CTR
estimates from one day to the next. Budget constraints are renewed each day. For now
we fix the number of displayed ads (C) to 1. Figure 3 plots the revenue generated by each
policy after a given number of days (for confidentiality reasons we have changed the unit
of revenue). All policies (including GREEDY) estimate CTRs based on past observations,
so as time passes by their estimates become more reliable and their performance improves.
Note that the exploration factor of BMIX-E causes it to perform substantially better than
that of BMIX. The budget throttling heuristic (BMIX-T and BMIX-ET) did not make much
difference in our experiments.

All of our proposed policies perform significantly better than GREEDY, which underscores
the importance of balancing exploration and exploitation. GREEDY is geared exclusively
toward exploitation, so one might expect that early on it would outperform the other policies.
However, that does not happen because GREEDY immediately fixates on ads that are not
very profitable (i.e., low ci,j · bi,j).

Next we vary the number of ads displayed for each query (C). Figure 4 plots total revenue
over ten days on the y-axis, and C on the x-axis. Each policy earns more revenue when
more ads are displayed (larger C). Our policies outperform GREEDY consistently across
different values of C. In fact, GREEDY must display almost twice as many ads as BMIX-E
to generate the same amount of revenue.

1 4 7 10
Time horizon (days)

0

1

2

3

4

5

T
ot

al
 r

ev
en

ue

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

Figure 3: Revenue generated by different ad-
vertisement policies (C=1).

1 4 7 10
Ads per query (C)

0

4

8

12

T
ot

al
 r

ev
en

ue

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

Figure 4: Effect of C (number of ads displayed
per query).

6 Summary and Future Work

In this paper we studied how a search engine should select which ads to display in order
to maximize revenue, when click-through rates are not initially known. We dealt with the
underlying exploration/exploitation tradeoff using multi-armed bandit theory. In the process
we contributed to bandit theory by proposing a new variant of the bandit problem that we
call budgeted multi-armed multi-bandit problem (BMMP). We proposed a policy for solving
BMMP and derived a performance guarantee. Practical extensions of our advertisement
policies are given in the extended version of the paper. Extensive experiments over real
ad data demonstrate substantial revenue gains compared to a greedy strategy that has no
provision for exploration.

Several useful extensions of this problem can be conceived. One such extension would be
to exploit similarity in ad attributes while inferring CTRs, as suggested in [8], instead
of estimating the CTR of each ad independently. Also, an adversarial formulation of this
problem merits study, perhaps leading to general consideration of how to manage exploration
versus exploitation in game-theoretic scenarios.

References

[1] N. Abe and A. Nakamura. Learning to Optimally Schedule Internet Banner Advertise-
ments. In ICML, 1999.

[2] R. Agrawal. Sample Mean Based Index Policies with O(log n) Regret for the Multi-
Armed Bandit Problem. Advances in Applied Probability, 27:1054–1078, 1995.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time Analysis of the Multi-Armed
Bandit Problem. Machine Learning, 47:235–256, 2002.

[4] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments.
Chapman and Hall, London, 1985.

[5] G. Casella and R. L. Berger. Statistical Inference. Thomson Learning, 2001.
[6] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar. Click Fraud Resistant Methods

for Learning Click-Through Rates. In WINE, 2005.
[7] T. Lai and H. Robbins. Asymptotically Efficient Adaptive Allocation Rules. Advances

in Applied Mathematics, 6:4–22, 1985.
[8] O. Madani and D. Decoste. Contextual Recommender Problems. In Proceedings of the

1st International Workshop on Utility-based Data Mining, 2005.
[9] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. AdWords and Generalized On-line

Matching. In FOCS, 2005.
[10] P. Rusmevichientong and D. Williamson. An Adaptive Algorithm for Selecting Prof-

itable Keywords for Search-Based Advertising Services. In EC, 2006.

A Practical Extensions of BMIX

In Section 4 we studied BMIX in a simple setting where the set of ads is fixed and no prior
information about CTR is available. We consider the more general setting now.

A.1 Exploiting Prior Information About CTRs

In practice, search engines may have some prior information available about the CTRs of ads
even before displaying them and gauging user response. The prior information may come
from various sources such as textual relevance of the ad to the query phrase or trustworthi-
ness of the advertiser who submitted the ad. We do not propose any method of deriving the
prior information in this paper; instead we focus on studying how the prior information, if it
is available, can be used in the advertisement policies and what difference it makes on their
performance. For instance, it would be interesting to find out whether our policies perform
any better than GREEDY if the prior estimates of CTRs are reasonably correct.

A.1.1 Modeling Prior Information

We use the following model of prior information. Suppose the true CTR of ad ai,j is ci,j .
We assume that the search engine does not know the CTR value a priori, but has a prior
distribution on the CTR. We set the form of prior distribution to a beta distribution 3

betai,j(αi,j , βi,j) where αi,j and βi,j are its parameters. We denote the mean and the
variance of betai,j by µ̂i,j and σ̂i,j .

In our experiments we synthetically generate the prior distributions of ads. While generating
these distributions, we vary two parameters: (a) the fraction of ads for which the prior
distribution is available, denoted by p, and (b) the accuracy of prior information, denoted
by v. To synthesize a prior distribution, we take the following two steps: (a) given the true
CTR value ci,j we create a beta distribution with mean ci,j and variance ci,j · (1 − v) and
(b) we then sample the mean of prior distribution, µ̂i,j , from the created beta distribution
and set the variance, σ̂i,j , to µ̂i,j · (1− v).

To give an intuition of how far the initial CTR estimate µ̂i,j can be from the actual CTR
ci,j for different values of v, we consider an ad of CTR equal to 0.2. When v = 0.9, µ̂i,j is
set between 0.1 and 0.3 with 0.58 probability. When v = 0.95, this probability increases to
0.68 and when v = 0.98, it is almost 0.90.

A.1.2 Exploiting Prior Information

Next we show how we use the prior distributions of CTRs in our advertisement policies.
All our policies including GREEDY use CTR estimates (ĉi,j ’s) in deciding which ads to
display. We use the prior distributions to find these CTR estimates. Initially, for each ad
ai,j the estimate of its CTR is the mean of its prior distribution betai,j(αi,j , βi,j), hence,
ĉi,j = µ̂i,j = αi,j

αi,j+βi,j
.

Once ad ai,j has been displayed for query phrase Qj , we condition its prior distribution
using the click observation of the ad and obtain the posterior distribution of its CTR. In
particular, if the prior distribution for ad ai,j is betai,j(αi,j , βi,j) and suppose that si,j

denotes the number of times the ad was clicked on when it was displayed for Qj while
fi,j denotes number of times it was not, then the posterior distribution of CTR is simply
betai,j(αi,j + si,j , βi,j + fi,j). Given the posterior distribution, the CTR estimate (or the
mean) is αi,j+si,j

αi,j+βi,j+si,j+fi,j
. We use this CTR estimate in all the advertisement policies

(GREEDY, BMIX and its variants).

0.80 0.85 0.90 0.95 1.00

p = 0.3

0

1

2

3

4

5

6

T
ot

al
 r

ev
en

ue

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

0.80 0.85 0.90 0.95 1.00

p = 0.5

0

1

2

3

4

5

6

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

0.80 0.85 0.90 0.95 1.00

Accuracy (v)

0

1

2

3

4

5

6

T
ot

al
 r

ev
en

ue

p = 0.7

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

0.80 0.85 0.90 0.95 1.00

Accuracy (v)

0

1

2

3

4

5

6 p = 0.9

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

Figure 5: Effect of the prior information.

A.1.3 Performance Comparison

For a given p and v we simulate the advertisement policies for a time horizon of ten days
and measure the total revenue generated. The results are shown in Figure 5, with v plotted
on the x-axis and the total revenue plotted on the y-axis. The four graphs are for different
values of p.

For a given value of p, if we increase v the prior estimates of CTRs (µ̂i,j) get closer to the
actual CTRs (ci,j), hence, all of the policies perform better. Similarly, if we increase p for a
fixed v, the policies get the prior distributions for more ads and they perform better. Note
that unlike GREEDY our policies are not affected significantly by the prior distribution of
CTRs. GREEDY does not have any provision for exploration, so it relies heavily on the
prior distributions. On the other hand, our policies only use the prior distributions to start
with (they keep low confidence in the prior distributions due to small αi,j + βi,j) and once
in steady state they largely rely on their own CTR estimates.

Except when the amount (p) and accuracy (v) of prior information is exceptionally high, our
policies significantly outperform GREEDY. Furthermore, our policies are never substantially
worse than GREEDY.

3The event of clicking on an ad is a Bernoulli random variable. It is standard to use a beta
distribution for modeling the prior of Bernoulli event [5].

1 4 7 10
Mean ad lifetime (days)

0.0

0.1

0.2

0.3

0.4

0.5

R
ev

en
ue

 p
er

 d
ay

GREEDY
BMIX
BMIX-T
BMIX-E
BMIX-ET

Figure 6: Effect of ad lifetime.

A.2 Allowing Submission/Revocation of Ads at Any Time

We now consider the scenario where advertisers can submit or revoke ads at any time.
Observe that BMIX (and its variants) seamlessly extends to this scenario. We make BMIX
to look at all the ads that are available at the time a query phrase is being answered, hence
any deleted ad is not considered while every newly submitted is.

Next we evaluate our policies empirically in this scenario. We use the following model of
submission and revocation of ads: an ad stays with the search engine for a lifetime that
is distributed according to a Poisson random variable with the mean set to λ. The ad is
revoked once its life is over. When the ad is revoked, we submit a new ad with identical
characteristics to the just revoked one. Hence, the rates of submission and revocation of ads
are kept the same.

Since the ads are in flux in this experiment, we ran our experiment for a long enough time
horizon (100 days) to reach steady state. Figure 6 shows the result, with mean lifetime
plotted on the x-axis and the revenue generated per day in the steady state on the y-axis.
As expected, as the average lifetime of ads (λ) increases, the performance gap between our
policies and GREEDY increases. When ads tend to remain in the system for a long time,
the exploration done by our policies pays off the most. Even for a reasonably short lifetime
of ads, e.g., one day, our policies still outperform GREEDY.

B Policy for Budgeted Unknown-CTR Advertisement Problem

In Section 4 we proposed our method of deriving a policy for BMMP given as input a
conventional multi-armed bandit policy. Below we use that method to derive BMIX, a policy
for the budgeted unknown-CTR advertisement problem which is an instance of BMMP. We
use MIX (from Section 3) as the input policy.

Policy BMIX :

• Each time a query for phrase Qj arrives:
1. For ads whose advertisers have not depleted their budgets yet, compute the

priorities as defined in Policy MIX, and display the C ads of highest priority.
2. Update the CTR estimates (ĉi,j) of the displayed ads by monitoring user clicks.

Note that it is not necessary to restart the MIX instance for Qj when an advertiser’s budget
is depleted as done in the generic BPOL (Section 4.1). The reason is that MIX maintains

state (i.e., ni,j , ĉi,j ’s) on a per-ad basis, so it can continue from where it left off if some ads
are removed from consideration “in-flight”.

In Appendix D we show that for MIX, f(n) is O(ln n) for any C ≥ 1. Hence, using our
general result of Section 4, we know that the average revenue generated by BMIX is at least
opt(N)/2 − O(ln N) for any C ≥ 1 where opt(N) denotes the optimal revenue generated
from answering N user queries.

C Performance Bound for BMMP Policies

We prove the lemmas of Section 4 here. First we give some background. Recall that we have
defined payoff instance I such that I(i, n) denotes the reward for arm i of bandit instance
S(n) for invocation n in payoff instance I. Since I(i, n) takes a particular reward value with
a certain probability, say P(I(i, n)), we can get the probability with which payoff instance I

arises by multiplying the probabilities of all I(i, n)’s, hence P(I) =
∏N

n=1

∏
i∈S(n) P(I(i, n)).

Let I denote the space consisting of all payoff instances, then
∑

I∈I P(I) = 1.

The total expected reward obtained under BPOL, bpol(N), is:

bpol(N) =
∑
I∈I

(
P(I) · bpol(I,N)

)
where bpol(I,N) denotes the total reward obtained in payoff instance I. Also,

bpol(I,N) =
N∑

n=1

Z(B(I, n), n, I)

where Z(i, n, I) denotes the reward obtained by activating arm i of bandit instance S(n)
for invocation n in payoff instance I.

Since BPOL activates the arms of only those types whose budgets have not depleted yet,
Z(B(I, n), n, I) = I(B(I, n), n). Hence,

bpol(N) =
∑
I∈I

(
P(I) ·

N∑
n=1

Z(B(I, n), n, I)
)

=
∑
I∈I

(
P(I) ·

N∑
n=1

I(B(I, n), n)
)

Similarly,

opt(N) =
∑
I∈I

(
P(I) ·

N∑
n=1

I(O(I, n), n)
)

Some further notation: let µi,B denote the expected reward of arm i of bandit instance B.
Let dI(T, n) denote the remaining budgets of type T at invocation n under BPOL in payoff
instance I. As mentioned in Section 4, we classify each invocation n into the following three
categories.

• Category 1: If µB(I,n),S(n) ≥ µO(I,n),S(n).

• Category 2: If {µB(I,n),S(n) < µO(I,n),S(n)} ∧ {dI(T, n) < I(O(I, n), n)}.
• Category 3: If {µB(I,n),S(n) < µO(I,n),S(n)} ∧ {dI(T, n) ≥ I(O(I, n), n)}.

For payoff instance I, let us denote the invocations of category k (1, 2 or 3) by N k(I). Let

bpolk(N) =
∑
I∈I

(
P(I) ·

∑
n∈Nk(I)

I(B(I, n), n)
)

It is easy to see that bpol(N) =
∑3

k=1 bpolk(N). Similarly, opt(N) =
∑3

k=1 optk(N) where

optk(N) =
∑
I∈I

(
P(I) ·

∑
n∈Nk(I)

I(O(I, n), n)
)

Lemma 1 opt1(N) ≤ bpol1(N).

Proof: Recall that:

bpol1(N) =
∑
I∈I

(
P(I) ·

∑
n∈N 1(I)

I(B(I, n), n)
)

For any predicate Π we define {Π(x)} to be the indicator function of the event Π(x); i.e.,
{Π(x)} = 1 if Π(x) is true and Π(x) = 0 otherwise. Using the definition of category 1,

bpol1(N)

=
∑
I∈I

(
P(I) ·

N∑
n=1

(
{µB(I,n),S(n) ≥ µO(I,n),S(n)} · I(B(I, n), n)

))

=
N∑

n=1

∑
I∈I

(
P(I) · {µB(I,n),S(n) ≥ µO(I,n),S(n)} · I(B(I, n), n)

)
For a given n we divide payoff instance I into two parts I1 and I2 where I1 consists of
I(i, n′)’s for n′ < n and I2 consist of I(i, n′)’s for n′ ≥ n. By definition, the arm selected by
BPOL (and OPT) at the nth invocation only depends on I1. Hence, we denote B(I, n) and
O(I, n) by B(I1, n) and O(I1, n) for the rest of this proof. Clearly, payoff instance space
I = I1 × I2 where I1 and I2 denote the payoff instance spaces for I1 and I2 respectively
and × denotes the cross product.

bpol1(N)

=
N∑

n=1

∑
I1∈I1

∑
I2∈I2

(
P(I1) · P(I2) · {µB(I1,n),S(n) ≥ µO(I1,n),S(n)} · I2(B(I1, n), n)

)

=
N∑

n=1

∑
I1∈I1

(
P(I1) · {µB(I1,n),S(n) ≥ µO(I1,n),S(n)} ·

∑
I2∈I2

(
P(I2) · I2(B(I1, n), n)

))

=
N∑

n=1

∑
I1∈I1

(
P(I1) · {µB(I1,n),S(n) ≥ µO(I1,n),S(n)} · µB(I1,n),S(n)

)

Similarly,

opt1(N) =
N∑

n=1

∑
I1∈I1

(
P(I1) · {µB(I1,n),S(n) ≥ µO(I1,n),S(n)} · µO(I1,n),S(n)

)

Since µB(I1,n),S(n) ≥ µO(I1,n),S(n) in the terms contributing to the above summations, we
get bpol1(N) ≥ opt1(N).

Lemma 2 opt2(N) ≤ bpol(N) + (|T | · rmax) where |T | denotes the number of arm types
and rmax denotes the maximum reward.

Proof: Recall that N 2(I) denotes the sequence of invocations of category 2 for payoff
instance I. Let us denote the set of O(I, n)’s for n ∈ N 2(I) by O2(I), i.e., O2(I) =
{O(I, n) | n ∈ N 2(I)}. Furthermore, let T 2(I) denote the set of types covering the arms
of set O2(I). Consider any type T from set T 2(I). By definition of category 2, we know
that the remaining budget of type T drops below rmax at some point in BPOL. Therefore,
dI(T,N + 1) < rmax (here dI(T,N + 1) denotes the remaining budget of type T in BPOL
after all N bandit instances of sequence S have been invoked).

Since the total reward given by the arms of a type is the difference of its initial budget
dI(T, 1) and the final budget dI(T,N + 1),

bpol(I,N) =
∑
T∈T

(
dI(T, 1)− dI(T,N + 1)

)
≥

∑
T∈T 2(I)

(
dI(T, 1)− dI(T,N + 1)

)
≥

∑
T∈T 2(I)

(
dI(T, 1)− rmax

)
=

∑
T∈T 2(I)

(
dI(T, 1)

)
−

(
|T 2(I)| · rmax

)
≥

∑
T∈T 2(I)

(
dI(T, 1)

)
−

(
|T | · rmax

)

By rearranging the terms,∑
T∈T 2(I)

dI(T, 1) ≤ bpol(I, N) +
(
|T | · rmax

)
Now we derive a bound for opt2(N). Recall that:

opt2(N) =
∑
I∈I

(
P(I) ·

∑
n∈N 2(I)

(
I(O(I, n), n)

))

Since we know that the total reward given by the arms of a type can never exceed its initial
budget,

opt2(N) ≤
∑
I∈I

(
P(I) ·

∑
T∈T 2(I)

dI(T, 1)
)

≤
∑
I∈I

(
P(I) ·

(
bpol(I,N) +

(
|T | · rmax

)))
=

∑
I∈I

(
P(I) · bpol(I,N)

)
+

(
|T | · rmax

)
= bpol(N) +

(
|T | · rmax

)
Hence, opt2(N) ≤ bpol(N) +

(
|T | · rmax

)
.

Lemma 3 opt3(N) = O(f(N)) where f(n) denotes the expected number of mistakes made
by POL for any finite n.

Proof: Recall that:

opt3(N) =
∑
I∈I

(
P(I) ·

∑
n∈N 3(I)

(
I(O(I, n), n)

))

Since I(i, n) ≤ rmax for all i and n,

opt3(N) ≤
∑
I∈I

(
P(I) ·

∑
n∈N 3(I)

rmax

)

=
∑
I∈I

(
P(I) ·

∑
n∈N 3(I)

(
rmax ·

|B|∑
i=1

{S(n) = i}
))

= rmax ·
|B|∑
i=1

Ci(N)

where Ci(N) denotes the expected number of times bandit instance Bi happens to be invoked
during the invocations of category 3:

Ci(N) =
∑
I∈I

(
P(I) ·

∑
n∈N 3(I)

{S(n) = i}
)

In Lemma 4 we show that for every Bi ∈ B, Ci(N) = O(f(N)). Hence, opt3(N) = O(f(N)).

Lemma 4 For every bandit instance Bi in B, Ci(N) = O(f(N)).

Proof: Let Si denote the sequence of invocations at which bandit instance Bi is invoked
in sequence S, i.e., Si = {n | S(n) = i}. We analyze BPOL now. Recall that in BPOL as the
arms of a bandit instance run out of budget, they are being successively discarded. Let Si

d(I)
denote the sequence of those invocations at which an arm(s) of Bi is discarded in payoff
instance I. We call the sequence of invocations of Bi between two successive invocations of
sequence Si

d(I) a batch. The number of batches is upper bounded by the number of arms of
Bi (which is finite). Clearly, within a batch the set of available arms of bandit instance Bi

remains fixed and POL operates on them independently and uninterruptedly.

Consider a batch in payoff instance I. Now pick an invocation n of category 3 in the batch
when bandit instance Bi is invoked. By definition of category 3, both arms B(I, n) and
O(I, n) are available to choose for POL at n. By choosing arm B(I, n) over O(I, n), POL
makes a mistake of choosing suboptimal arm since µB(I,n),S(n) < µB(I,n),S(n). Hence, we
have shown that in a given batch, each invocation of category 3 is caused by a mistake of
POL. Given the performance bound of POL, the expected number of such mistakes in a
batch is f(batch length), hence O(f(N)). Since the number of batches is finite, Ci(N) is
O(f(N)).

D Performance Bound for MIX

The optimal policy for the unbudgeted unknown-CTR advertisement problem is to display
the C ads of the highest expected reward (ci,j · bi,j) for each query phrase. We prove that
MIX makes O(ln N) mistakes, on expectation, for any C ≥ 1 where N denotes the number
of queries answered. A mistake occurs when an ad of less expected reward (ci,j · bi,j) is
displayed for a query phrase while keeping an ad of higher expected reward out. Since MIX
is adapted from UCB, our proof is largely inherited from [3].

Consider query phrase Qj ∈ Q. Let Aj denote the set of ads for phrase Qj and let Gj denote
the set of C ads of the highest expected rewards. For simplicity, we assume that each ad
has a unique expected reward. Clearly, a mistake occurs when an ad from set Aj − Gj is
displayed for Qj . We denote the number of times ad ai,j is displayed by MIX by mi,j(nj)
where nj denotes the number of times query phrase Qj has been answered so far.

Theorem 2 For any ad ai,j ∈ {Aj − Gj}, E(mi,j(Nj)) = O(ln Nj) where E denotes the
expectation.

Proof: Recall the priority function of MIX:

Pi,j =

{ (
ĉi,j +

√
2 ln nj

ni,j

)
· bi,j if ni,j > 0

∞ otherwise

Here ĉi,j denote the current CTR estimate of ad ai,j based on the past observations, bi,j

is its bid value, ni,j denotes the number of times ai,j has been displayed so far for phrase
Qj and nj denotes the number of times phrase Qj has been queried so far in the day. We
denote the CTR estimated after ni,j display of ads by ĉi,j(ni,j). For notation convenience,

we denote
√

2 ln nj

ni,j
in the priority function by g(nj , ni,j).

Some further notation: For any predicate Π we define {Π(x)} to be the indicator function
of the event Π(x); i.e., {Π(x)} = 1 if Π(x) is true and Π(x) = 0 otherwise. For the nth

j

occurrence of query phrase Qj , let Lj(nj) denote the ad of lowest priority value in Gj and
let Uj(nj) denote the set of C ads displayed by MIX. Consider ai,j ∈ {Aj − Gj}, then:

mi,j(Nj) = 1 +
Nj∑

nj=|Aj |+1

{ai,j ∈ Uj(nj)}

{since each ad from Aj is displayed once initially}

≤ l +
Nj∑

nj=|Aj |+1

{ai,j ∈ Uj(nj), mi,j(nj − 1) ≥ l}

{where l is an arbitrary positive integer}

In order for ad ai,j to be displayed on the nth
j occurrence of query phrase Qj , its priority

must be greater than or equal to the priority of Lj(nj), hence,

mi,j(Nj)

≤ l +
Nj∑

nj=|Aj |+1

∑
ak,j∈Gj

{(
ĉi,j(mi,j(nj − 1)) + g(nj − 1,mi,j(nj − 1))

)
· bi,j ≥

(
ĉk,j(mk,j(nj − 1)) + g(nj − 1,mk,j(nj − 1))

)
· bk,j , ak,j = Lj(nj), mi,j(nj − 1) ≥ l

}

≤ l +
Nj∑

nj=|Aj |+1

∑
ak,j∈Gj

{
max

l≤si<nj

(
ĉi,j(si) + g(nj − 1, si)

)
· bi,j ≥

min
0<sk<nj

(
ĉk,j(sk) + g(nj − 1, sk)

)
· bk,j , ak,j = Lj(nj)

}
{since ∀ak,j , 0 < mk,j(nj − 1) < nj}

≤ l +
Nj∑

nj=1

∑
ak,j∈Gj

nj∑
sk=1

nj∑
si=l

{(
ĉi,j(si) + g(nj , si)

)
· bi,j ≥

(
ĉk,j(sk) + g(nj , sk)

)
· bk,j ,

ak,j = Lj(nj + 1)
}

Now we focus our attention on
(
ĉi,j(si)+g(nj , si)

)
· bi,j ≥

(
ĉk,j(sk)+g(nj , sk)

)
· bk,j where

ak,j ∈ Gj . Let us call it condition Y . Observe the following three terms:

ĉk,j(sk) ≤ ck,j − g(nj , sk) (1)

ĉi,j(si) ≥ ci,j + g(nj , si) (2)

ck,j · bk,j < ci,j · bi,j + 2 · g(nj , si) · bi,j (3)

It is easy to see that if none of these terms are true, then condition Y can not hold true.
Hence, we can replace condition Y in the above equation by condition {1 ∨ 2 ∨ 3} since the
replacement does not make the RHS any smaller.

mi,j(Nj)

≤ l +
Nj∑

nj=1

∑
ak,j∈Gj

nj∑
sk=1

nj∑
si=l

({
ĉk,j(sk) ≤ ck,j − g(nj , sk)

}
+

{
ĉi,j(si) ≥ ci,j + g(nj , si)

}
+

{
ck,j · bk,j < ci,j · bi,j + 2 · g(nj , si) · bi,j

})
· {ak,j = Lj(nj + 1)}

(4)

We bound the probability of Terms 1 and 2 using Chernoff-Hoeffding bound:

Pr{ĉk,j(sk) ≤ ck,j − g(nj , sk)} ≤ e−4·(ln nj) = n−4
j

Pr{ĉi,j(si) ≥ ci,j + g(nj , si)} ≤ e−4·(ln nj) = n−4
j

Recall that we can set l to any positive integer. We set l to lo = d(8 · (ln Nj) · b2
i,j)/∆2

i,je
where ∆i,j = minak,j∈Gj

(
ck,j · bk,j − ci,j · bi,j

)
. For ak,j ∈ Gj and si ≥ lo, Term 3 is false

because:

ck,j · bk,j − ci,j · bi,j − 2 · g(nj , si) · bi,j = ck,j · bi,j − ci,j · bi,j − 2 ·
√

2(ln nj)/si · bi,j

≥ ck,j · bk,j − ci,j · bi,j − 2 ·
√

2(ln Nj)/lo · bi,j

= ck,j · bk,j − ci,j · bi,j −∆i,j

≥ 0

Hence, by taking expectation of Equation 4,

E(mi,j(Nj))

≤ l +
Nj∑

nj=1

∑
ak,j∈Gj

nj∑
sk=1

nj∑
si=l

(
Pr{ĉk,j(sk) ≤ ck,j − g(nj , sk)}+ Pr{ĉi,j(si) ≥ ci,j + g(nj , si)}

+Pr{ck,j · bk,j < ci,j · bi,j + 2 · g(nj , si) · bi,j}
)
· Pr{ak,j = Lj(nj + 1)}

≤ lo +
Nj∑

nj=1

∑
ak,j∈Gj

nj∑
sk=1

nj∑
si=lo

(
Pr{ĉk,j(sk) ≤ ck,j − g(nj , sk)}

+Pr{ĉi,j(si) ≥ ci,j + g(nj , si)}
)
· Pr{ak,j = Lj(nj + 1)}

{ by setting l = lo }

≤ lo +
∞∑

nj=1

nj∑
sk=1

nj∑
si=1

∑
ak,j∈Gj

2 · n−4
j · Pr{ak,j = Lj(nj + 1)}

= lo +
∞∑

nj=1

nj∑
sk=1

nj∑
si=1

2 · n−4
j

≤
⌈

8 · (ln Nj) · b2
i,j

∆2
i,j

⌉
+

(
1 +

π2

3
)

Hence E(mi,j(Nj)) = O(ln Nj).

Given the above result it is clear that the total expected number of mistakes made by MIX
for N queries,

∑
Qj∈Q

∑
ai,j∈Aj−Gj

E(mi,j(Nj)), is O(ln N).

