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Chapter 1
Review: Abstract Parsing
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(Goal:

Statically Checking the Syntax of Generated Code
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Problem:
CollectingEval is Infeasible
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Previous Works:

Abstraction into Grammar
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Previous Works:

Abstraction into Grammar
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Previous Works:

Abstraction into Grammar
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Previous Works:

Yasuhiko Minamide. “Static approximation of dynamically generated web pages.” WWW’05
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Abstract Parsing
Abstraction using ParseStack

Key idea #1
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Abstract Parsing
Abstraction using ParseStack

Key idea #2
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Abstract Parsing

Abstraction using ParseStack
Key idea #2
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Code as ParseStack Transition Function

Code = P — P
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Abstract Parsing
Abstraction using ParseStack

Abstraction Step
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Abstract Parsing
Abstraction into ParseStack
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Abstract Parsing
Abstraction into ParseStack
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Chapter 11

Extended Abstract Parsing:
Constraint-based Analysis of Generated Code
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Parsing in Abstract Parsing:

“Decision Procedure”
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Parsing in Modern Compiler:
“AST Builder”
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Extended Abstract Parsing
(Big Picture)
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Abstraction Plan

Abstract Parsing
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P A g7 = ParseStack with AST

: List of (ParsingState, Corresponding AST)
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P A g7 = ParseStack with AST

Algorithm 1 parse_action algorithm

1: procedure parse_action(p, t)

2: Stop <— the state on top of stack p
3:  |if ACTION s;0p, t] = shift s then Add
4: push s onto the stack p LeafNode
5: return p
6: elde if ACTION [st0p,t] = reduce A — (3 then
7 pop | B3| symbol off the stack p
8: Stop <— the state on top of stack p
9: push GOTO|st0p, A] onto the stack p

10: return parse_action(p,t)

11:  endif

12: end procedure Compose

NewNode
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P = ParseStack with Constraint

: List of (ParsingState, Corresponding Constraint)

1. Need Eaxtract : AST — C

2. Extract has to be compositional, which means
a constraint of an AST should be a composition

of constraints of subASTs.

example

Extract( &) =E xz‘mcz‘(@) + E xz‘mcz‘(@)

= [3, 3]

33




P = ParseStack with Constraint

Algorithm 1 parse_action algorithm

1: procedure parse_action(p, t)

2: Stop <— the state on top of stack p
3:  |if ACTION s;0p, t] = shift s then Add
4: push s onto the stack p Constraint
5: return p
6: elde if ACTION [st0p,t] = reduce A — (3 then
7 pop | B3| symbol off the stack p
8: Stop <— the state on top of stack p
9: push GOTO|st0p, A] onto the stack p

10: return parse_action(p,t)

11:  endif

12: end procedure Compose

New Constraint
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Compositional Constraints

® Uninitialized Local Variables Analysis
® Interval Value Analysis

® Simple Type Inference
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Work in Progress

® Formalize Extended Abstract Parsing
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® Formalize Instantiation of the Three Examples

p Uninitialized Local Variables Analysis

p Interval Value Analysis

p Simple Type Inference
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