
Extended Abstract Parsing:
Constraint-based Analysis of Two-staged Programs

Soonho Kong
soon@ropas.snu.ac.kr

23 Apr 2010
ROPAS Show & Tell

is is a joint-work with Wontae Choi and Prof. Kwangkeun Yi

†

†

mailto:soon@ropas.snu.ac.kr
mailto:soon@ropas.snu.ac.kr

Chapter 1
Review: Abstract Parsing

2

Two-Staged Program

Two-Staged
Program

1+2
Code

Eval : Pgm → Code

3

Two-Staged Program

Two-Staged
Program

1+
Code

Eval : Pgm → Code

4

Two-Staged Program

Two-Staged
Program

1+
Code

Eval : Pgm → Code

X

Target Language
Grammar

5

Goal:
Statically Checking the Syntax of Generated Code

Two-Staged
Program

{: Pgm → 2Code

CollectingEval 1+2

Code }3+4

Code

6/2

Code

7*5

Code

(5)

Code

7

Code

6-5

Code

3+2

Code

6

Goal:
Statically Checking the Syntax of Generated Code

Two-Staged
Program

{: Pgm → 2Code

CollectingEval 1+2

Code }3+4

Code

6/2

Code

7*5

Code

(5)

Code

7

Code

6-5

Code

3+2

Code

Target Language
Grammar

7

Goal:
Statically Checking the Syntax of Generated Code

Two-Staged
Program

{: Pgm → 2Code

CollectingEval 1+2

Code }3+4

Code

6/2

Code

7*5

Code

(5)

Code

7

Code

6-5

Code

3+2

Code

Target Language
Grammar

Safe!

8

Goal:
Statically Checking the Syntax of Generated Code

Two-Staged
Program

{: Pgm → 2Code

CollectingEval 1+2

Code }4+

Code

6/2

Code

7*5

Code

5)

Code

7

Code

/3

Code

3+2

Code

9

Goal:
Statically Checking the Syntax of Generated Code

Two-Staged
Program

{: Pgm → 2Code

CollectingEval 1+2

Code }4+

Code

6/2

Code

7*5

Code

5)

Code

7

Code

/3

Code

3+2

Code

X

X X

Target Language
Grammar

10

Goal:
Statically Checking the Syntax of Generated Code

Two-Staged
Program

{: Pgm → 2Code

CollectingEval 1+2

Code }4+

Code

6/2

Code

7*5

Code

5)

Code

7

Code

/3

Code

3+2

Code

X

X X

Target Language
Grammar

XUnsafe!

11

Problem:
CollectingEval is Infeasible

Two-Staged
Program

{: Pgm → 2Code

CollectingEval 1+2

Code }4+

Code

6/2

Code

7*5

Code

5)

Code

.7

Code

?

12

Solution:
Use Abstraction

d
Abstraction

for Set of Code

�Eval
: Pgm → �D

Two-Staged
Program

13

S → aS
S → bA
A → ε
A → cA

Grammar of
Generated Code

�Eval
: Pgm → �D

Two-Staged
Program

Previous Works:
Abstraction into Grammar

Target Language
Grammar

⊆ ?

14

S → aS
S → bA
A → ε
A → cA

Grammar of
Generated Code

�Eval
: Pgm → �D

Two-Staged
Program

Previous Works:
Abstraction into Grammar

Target Language
Grammar

⊆ ?

CFG

CFG

15

Previous Works:
Abstraction into Grammar

⊆
?

CFG CFG

Undecidable!

16

Previous Works:
Abstraction into Grammar

⊆
?

RG CFG

Decidable

17

S → aS
S → bA
A → ε
A → cA

Grammar of
Generated Code

�Eval
: Pgm → �D

Two-Staged
Program

Previous Works:
Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.
“Precise analysis of string expressions.” SAS’03

Target Language
Grammar

⊆ ?

CFG

CFG => RG

18

S → aS
S → bA
A → ε
A → cA

Grammar of
Generated Code

�Eval
: Pgm → �D

Two-Staged
Program

Previous Works:
Yasuhiko Minamide. “Static approximation of dynamically generated web pages.” WWW’05

Target Language
Grammar

⊆ ?

CFG=>RG

CFG

19

Abstract Parsing
Abstraction using ParseStack

s5

s1

s10

A ParseStack represents a set of Code
{ }1+, (1+3)+, (1+3+7)+, ...γ() =

Key idea #1

20

Abstract Parsing
Abstraction using ParseStack

Key idea #2

P1 P2

Code

Code as ParseStack Transition Function
Code P → P

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

21

Abstract Parsing
Abstraction using ParseStack

Key idea #2

P1 P2

Code

Code as ParseStack Transition Function

Code concatenation

Code
concat

= ◦

+

Function composition.

C1

C1

C2

C2

Code P → P

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

22

Abstract Parsing
Abstraction using ParseStack

Abstraction Step

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

2Code 2P→P 2P → 2P D� → D�

AbstractParsing
: Pgm → (2P → 2P)

Abstract Parsing

23

Abstract Parsing
Abstraction into ParseStack

Two-Staged
Program

AbstractParsing

Target Language
Grammar

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

Parser

: Pgm → (2P → 2P) f

24

Abstract Parsing
Abstraction into ParseStack

Two-Staged
Program

AbstractParsing

Target Language
Grammar

s1: S -> . E s3: E -> id .

s5: E -> or . E E

s8: S -> E .

s10: E -> or E . E

s14: E -> or E E .

id

or

E

id

E

id

or

E
or

Parser

{ }s5

s1

s10

, XAccepting
ParseStack

Non-Accepting
ParseStack

s1

s8: Pgm → (2P → 2P) { }Initial
ParseStack

s1f =

25

Chapter II
Extended Abstract Parsing:

Constraint-based Analysis of Generated Code

26

Parsing in Abstract Parsing:
“Decision Procedure”

Code Parser

Grammar

Correct

IncorrectX
1+2

27

+ Abstract Syntax Tree

Parsing in Modern Compiler:
“AST Builder”

Code Parser

Grammar

Correct

IncorrectX
1+2

28

+ Set of Constraints

Code
Extended
Abstract

Parser

Grammar &
Semantic Action

Correct

IncorrectX
1+2

Extended Abstract Parsing
(Big Picture)

{C1, C2, . . . , Cn}

Solve!

29

Abstraction Plan

Abstract Parsing

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

2Code 2P→P 2P → 2P D� → D�

2Code 2P→P 2P → 2P D� → D�2PC → 2PC2PAST→PAST 2PC→PC

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

Extended Abstract Parsing

30

= ParseStack with ASTPAST

: List of (ParsingState, Corresponding AST)

s2

s1

s3

s2

1

+

2

s2

s1 1

+

2

Reduce

31

However the following program generates “a” (after zero itera-
tions), “(or a b)” (after one iteration), “(or (or a b) b)” (af-
ter two iterations), and so on,

re x ‘a ‘(or . ,x . b) x

and all of them are syntactically correct.

2.3 Collecting Semantics and its Abstraction Plan
The collecting semantics of the language is defined as follows. This
semantics is the natural set extension for the sets of environments.
The fix operator is the usual least fixpoint operator to capture all
the iteration results from loops.

Code = Token sequence

σ ∈ Env = Var → Code

[[e]]0 ∈ 2Env → 2Code

[[f]]1 ∈ 2Env → 2Code

[[x]]0Σ = {σ(x) | σ ∈ Σ}

[[let x e1 e2]]
0Σ =

[

σ∈Σ

[

c∈[[e1]]0{σ}

[[e2]]
0{σ[x �→ c]}

[[or e1 e2]]
0Σ = [[e1]]

0Σ ∪ [[e2]]
0Σ

[[re x e1 e2 e3]]
0Σ =

[

σ∈Σ

[[e3]]
0{σ[x �→ c] | c ∈

fixλC.[[e1]]
0{σ} ∪ [[e2]]

0{σ[x �→ c�] | c� ∈ C}}
[[‘f]]0Σ = [[f]]1Σ

[[x]]1Σ = {x}
[[let]]1Σ = {let}
[[or]]1Σ = {or}
[[re]]1Σ = {re}
[[(]]1Σ = {(}
[[)]]1Σ = {)}

[[f1.f2]]
1Σ =

[

σ∈Σ

{xy | x ∈ [[f1]]
1{σ} ∧ y ∈ [[f2]]

1{σ}}

[[,e]]1Σ = [[e]]0Σ

From the collecting semantics above, we derive a series of ab-
stract semantics. From the collecting semantics’ semantic domain

2Var→Code → 2Code ,

the powerset environment 2Var→Code is abstracted into Var →
2Code , i.e., the semantic domain becomes

(Var → 2Code)→ 2Code .

Now the abstraction of 2Code becomes the essential part of the ab-
stract interpretation design. Before we abstract 2Code , we formu-
late a code fragment as a function that maps a parse stack to a parse
stack. We call this formulation “concrete parsing” (Section 3). That
is, 2Code becomes 2P→P (where P is the set of parse stacks). Then
we abstract 2P→P into 2P → 2P (Section 4). Lastly, we present
an abstract-parsing abstract interpretation that parameterizes an ab-
stract domain D� of 2P .

In summary, this series of abstraction steps for the value domain
in the semantics is:

2Code

−→

2P → 2P2P→P D� → D�

−→ −→Collecting
Semantics

Concrete
Parsing

Semantics

First Step
Abstraction
Semantics

Parameterized
Abstract
Parsing

Semantics

3. Concrete Parsing
3.1 Analyze-and-parse Strategy
We take the analyze-and-parse strategy in abstract parsing [16] into
our semantics. The semantics simulates the parsing operations. It
is compared to the analyze-then-parse strategy which analyzes the
program, calculates approximated set of code, then parses them.

Analyze-and-parse strategy is more efficient than analyze-then-
parse strategy as reported in [16]. In analyze-then-parse strategy,
code is abstracted into a grammar. Then it checks whether the
abstracted grammar is included in the reference grammar or not.
However, grammar inclusion check is more expensive than parsing.
In addition, analyze-and-parse directly computes parsing informa-
tion without approximating the code into the grammar.

We formulate the analyze-and-parse strategy in our semantics.
The parsing domain is constructed as an abstract domain where
code is abstracted into parsing information. We abstract the parsing
domain into an abstract parsing domain to control the precision and
cost of analysis and to make sure the analysis terminates.

Since our semantics uses an LR(k) parser as a component, it is
essential to review its key concepts.

3.2 LR Parsing
The LR(k) parsing technique [1] is an efficient way to determine
whether the string conforms to the given grammar or not. An LR
parser is a state machine which consists of a parse stack, an action
table, and a goto table. The set of parse states Σ = {s1, s2, . . . , sn}
is defined by parser generator from the given grammar. Parse stack
p ∈ P = Σ+ is a sequence of parse states which it has been in.
Two special parse stacks pinit and pacc are defined. Parsing starts
with the initial parse stack pinit . Successful parsing should stop at
the accept parse stack pacc . Otherwise it indicates that the parsed
string does not conform to the given grammar. String representation
“stop . . . sbot” denotes a parse stack whose top state is stop and
bottom state is sbot. The action table decides which operation
(shift/reduce) to perform from the current state and current token.
The goto table determines the state to push after we pop states in
the reduce operation.

The process of parsing is a composition of the atomic function
parse action : P → Token → P which is described in Algo-
rithm 1. It returns the parse stack from the given parse stack p and
input token t.

Algorithm 1 parse action algorithm
1: procedure parse action(p, t)
2: stop ← the state on top of stack p
3: if ACTION [stop, t] = shift s then
4: push s onto the stack p
5: return p
6: else if ACTION [stop, t] = reduce A→ β then
7: pop |β| symbol off the stack p
8: stop ← the state on top of stack p
9: push GOTO [stop, A] onto the stack p

10: return parse action(p, t)
11: end if
12: end procedure

Shift s

s

t
s’ = GOTO(t,A)

Reduce A→ β

= ParseStack with ASTPAST

Add
LeafNode

Compose
NewNode

32

PC = ParseStack with Constraint
: List of (ParsingState, Corresponding Constraint)

Extract : AST → C1. Need
2. Extract has to be compositional, which means
 a constraint of an AST should be a composition
 of constraints of subASTs.

Extract() = Extract() + Extract()1 2

 = [3, 3]

example

1

+

2

33

However the following program generates “a” (after zero itera-
tions), “(or a b)” (after one iteration), “(or (or a b) b)” (af-
ter two iterations), and so on,

re x ‘a ‘(or . ,x . b) x

and all of them are syntactically correct.

2.3 Collecting Semantics and its Abstraction Plan
The collecting semantics of the language is defined as follows. This
semantics is the natural set extension for the sets of environments.
The fix operator is the usual least fixpoint operator to capture all
the iteration results from loops.

Code = Token sequence

σ ∈ Env = Var → Code

[[e]]0 ∈ 2Env → 2Code

[[f]]1 ∈ 2Env → 2Code

[[x]]0Σ = {σ(x) | σ ∈ Σ}

[[let x e1 e2]]
0Σ =

[

σ∈Σ

[

c∈[[e1]]0{σ}

[[e2]]
0{σ[x �→ c]}

[[or e1 e2]]
0Σ = [[e1]]

0Σ ∪ [[e2]]
0Σ

[[re x e1 e2 e3]]
0Σ =

[

σ∈Σ

[[e3]]
0{σ[x �→ c] | c ∈

fixλC.[[e1]]
0{σ} ∪ [[e2]]

0{σ[x �→ c�] | c� ∈ C}}
[[‘f]]0Σ = [[f]]1Σ

[[x]]1Σ = {x}
[[let]]1Σ = {let}
[[or]]1Σ = {or}
[[re]]1Σ = {re}
[[(]]1Σ = {(}
[[)]]1Σ = {)}

[[f1.f2]]
1Σ =

[

σ∈Σ

{xy | x ∈ [[f1]]
1{σ} ∧ y ∈ [[f2]]

1{σ}}

[[,e]]1Σ = [[e]]0Σ

From the collecting semantics above, we derive a series of ab-
stract semantics. From the collecting semantics’ semantic domain

2Var→Code → 2Code ,

the powerset environment 2Var→Code is abstracted into Var →
2Code , i.e., the semantic domain becomes

(Var → 2Code)→ 2Code .

Now the abstraction of 2Code becomes the essential part of the ab-
stract interpretation design. Before we abstract 2Code , we formu-
late a code fragment as a function that maps a parse stack to a parse
stack. We call this formulation “concrete parsing” (Section 3). That
is, 2Code becomes 2P→P (where P is the set of parse stacks). Then
we abstract 2P→P into 2P → 2P (Section 4). Lastly, we present
an abstract-parsing abstract interpretation that parameterizes an ab-
stract domain D� of 2P .

In summary, this series of abstraction steps for the value domain
in the semantics is:

2Code

−→

2P → 2P2P→P D� → D�

−→ −→Collecting
Semantics

Concrete
Parsing

Semantics

First Step
Abstraction
Semantics

Parameterized
Abstract
Parsing

Semantics

3. Concrete Parsing
3.1 Analyze-and-parse Strategy
We take the analyze-and-parse strategy in abstract parsing [16] into
our semantics. The semantics simulates the parsing operations. It
is compared to the analyze-then-parse strategy which analyzes the
program, calculates approximated set of code, then parses them.

Analyze-and-parse strategy is more efficient than analyze-then-
parse strategy as reported in [16]. In analyze-then-parse strategy,
code is abstracted into a grammar. Then it checks whether the
abstracted grammar is included in the reference grammar or not.
However, grammar inclusion check is more expensive than parsing.
In addition, analyze-and-parse directly computes parsing informa-
tion without approximating the code into the grammar.

We formulate the analyze-and-parse strategy in our semantics.
The parsing domain is constructed as an abstract domain where
code is abstracted into parsing information. We abstract the parsing
domain into an abstract parsing domain to control the precision and
cost of analysis and to make sure the analysis terminates.

Since our semantics uses an LR(k) parser as a component, it is
essential to review its key concepts.

3.2 LR Parsing
The LR(k) parsing technique [1] is an efficient way to determine
whether the string conforms to the given grammar or not. An LR
parser is a state machine which consists of a parse stack, an action
table, and a goto table. The set of parse states Σ = {s1, s2, . . . , sn}
is defined by parser generator from the given grammar. Parse stack
p ∈ P = Σ+ is a sequence of parse states which it has been in.
Two special parse stacks pinit and pacc are defined. Parsing starts
with the initial parse stack pinit . Successful parsing should stop at
the accept parse stack pacc . Otherwise it indicates that the parsed
string does not conform to the given grammar. String representation
“stop . . . sbot” denotes a parse stack whose top state is stop and
bottom state is sbot. The action table decides which operation
(shift/reduce) to perform from the current state and current token.
The goto table determines the state to push after we pop states in
the reduce operation.

The process of parsing is a composition of the atomic function
parse action : P → Token → P which is described in Algo-
rithm 1. It returns the parse stack from the given parse stack p and
input token t.

Algorithm 1 parse action algorithm
1: procedure parse action(p, t)
2: stop ← the state on top of stack p
3: if ACTION [stop, t] = shift s then
4: push s onto the stack p
5: return p
6: else if ACTION [stop, t] = reduce A→ β then
7: pop |β| symbol off the stack p
8: stop ← the state on top of stack p
9: push GOTO [stop, A] onto the stack p

10: return parse action(p, t)
11: end if
12: end procedure

Shift s

s

t
s’ = GOTO(t,A)

Reduce A→ β

Add
Constraint

Compose
New Constraint

34

PC = ParseStack with Constraint

Compositional Constraints

• Uninitialized Local Variables Analysis

• Interval Value Analysis

• Simple Type Inference

35

Work in Progress
• Formalize Extended Abstract Parsing

• Formalize Instantiation of the ree Examples

‣ Uninitialized Local Variables Analysis

‣ Interval Value Analysis

‣ Simple Type Inference

2Code 2P→P 2P → 2P D� → D�2PC → 2PC2PAST→PAST 2PC→PC

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

The parsing process parse : P → Token sequence → P is a
composition of the parse action .

parse(p, t1 . . . tn)

= parse action(. . . (parse action(p, t1)), . . . , tn)

A parser gets the input code c and returns the parse stack parse(pinit , c).

3.3 Concrete Parsing Domain : Value VP = 2P→P

We define the concrete parsing domain. It is “concrete” in that we
use the same parse stack defined in LR(k) parsing.

Because LR(k) parsing computes a parse stack, it is tempting to
choose the parse stack parse(pinit , c) as an abstraction of the code
c. However this setting causes a problem when we handle the con-
catenation x.y. Let px = parse(pinit , x) and py = parse(pinit , y)
be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −−→←−−α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f]]0P σ = [[f]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[,e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP = 2P→P

to VP̂ = 2P → 2P by establishing the Galois connection
VP −−→←−−α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = λP.[[e1]]

0
P̂ σP ∪ [[e2]]

0
P̂ σP

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.λP.[[e1]]
0
P̂ σP ∪ [[e2]]

0
P̂ (σ[x �→ k])P])

[[‘f]]0P̂ σ = [[f]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[,e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

The abstract semantic function [[·]]0
P̂

is used to check whether
generated code conforms to the grammar. For the given program e,
we compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare S
with {pacc}, the accept parse state. If they are equal, we conclude
that the generated code in the given program conforms to the
grammar. Otherwise, the analysis concludes that the program may
generate syntactically incorrect code.

Consider, the example program e1 shown in 2.2:

re x ‘a ‘(or . ,x . b) x

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting 2P (the powerset domain of parse stacks) into
a particular domain, we provide conditions which the abstract do-
main for 2P should satisfy. Then we define the semantic function
on the abstract parsing domain.

36

ank You

