Extended Abstract Parsing:

Constraint-based Analysis of Two-staged ProgramsT

Soonho Kong

n@ropa

23 Apr 2010
ROPAS Show & Tell

[This is a joint-work with Wontae Choi and Prof. Kwangkeun Yi

mailto:soon@ropas.snu.ac.kr
mailto:soon@ropas.snu.ac.kr

Chapter 1
Review: Abstract Parsing

Two-Staged Program

FEval : Pgm — Code

—— |])

Code

Program

Two-Staged Program

FEval : Pgm — Code

———— |]+

Code

Program

Two- Staged Pro oram

’»u H M‘M“Emg
A
TN

Eval : Pgm — Code

Code

Two- Staged

Program

@

Target Language

Grammar

k"'—'

5 y

y

(Goal:

Statically Checking the Syntax of Generated Code

t CollectingFval 1+2 3+4 6/2 7*5
e | Cod
»%m)ﬁ' : Pgm — 27°°°) Code Code Code Code
‘Two-Staged () 7 6-5 3+2
Program

Code Code Code Code

(Goal:

Statically Checking the Syntax of Generated Code

EOot HUMAN 9 ot
1 3 fngio = g
(¢(@)

o' .
A aewe| CollectingFEval
z = %, ®

DrOTi0:
WNingen| © Pgm — 2004¢

ke >
oo 3| °
’@'?:.’W ﬁ,‘zm@ ﬁ
e s -,

SR UNIO]

Program

1+2 3+4 o/2 /*5

Code Code Code Code

(5) 7 6-5 3+2

Code Code Code Code

a

Target Language

Grammar

—

7 V.
4

(Goal:

Statically Checking the Syntax of Generated Code

CollectingFval 1+2 | | 3+4 6/2 7*5

: Pgm — 9 Code

LM Te,
NP5
Inilliloweyorgp 8|
ﬁ_}‘“.,',.i.l. %.] g ﬁ
= 0N

Code Code Code Code

(5) 7 6-5 3+2

Program
Code Code Code Code

a

Target Language

Grammar

—

8 V.

y

(Goal:

Statically Checking the Syntax of Generated Code

%N CollectingEval 1+2 4+ 6/2 7%5
sasw ity Cod
PORE| Pgm — 27°%° e ol Col com
‘Two-Staged 5) . 3 317
Program

Code Code Code Code

(Goal:

Statically Checking the Syntax of Generated Code

%N CollectingEval 1+2 43 6/2 7%5

saswny . Cod

MONAE Pgm — 270 o o om
‘Two-Staged 53 . 3 .

Program

Code Code Code Code

a

Target Language

Grammar

(Goal:

Statically Checking the Syntax of Generated Code

nsafe!
2 CollectingFEval 1+2 43 6/2 7*5
0’ . Cod
Mssmas - Pgm — 27 Code Code Code Code
‘Two-Staged 59 v /3 342
Program

Code Code Code Code

a

Target Language

Grammar

Problem:
CollectingEval is Infeasible

CollectingFval 1+2 4+ 6/2 7*5
%%hm . P QCOde
il j@ I gm —) Code Code Code Code
TWO-Staged 5) 7 ® o o o0 0
Program
Code Code

g m-wEfI‘fLE
Ao
E

%u

s = é
G, T g

‘Two-Staged

Program

Solution:
Use Abstraction

Fol
: Pgm — D

e 5 d

Abstraction
for Set of Code

Previous Works:

Abstraction into Grammar

. _ S — aS

I - S - bA
Iy
Al Eval A- e
g - At oA
NRrs : Pgm — D
Mot Grammar of
:f__}ﬁg d é
: lnlm[? &

Guril SN 2588 ulicory

e Generated Code
‘Two-Staged ——

Program '/
()2
- ‘

Target Language

Grammar

Previous Works:

Abstraction into Grammar

HUMAN ¥ i
1 2 g 7 AN g

*

J©O\b) @'?4
3%:»’ —
el Fuval
y Ko L)
n T

\gﬁm?;\,]’% : Pgm — D
RPgR.E R, |
‘Two-Staged

Program

CFG

S — aS
S — bA
A— ¢

A — cA

Grammar of

Generated Code

N-<
i CFG

Target Language

Grammar

Previous Works:

Abstraction into Grammar

C)
CFG C CFG

Undecidable!

Previous Works:

Abstraction into Grammar

C)
RG C CFG

Decidable

Previous Works:

Aske Simon Christensen, Anders Mller, and Michael I. Schwartzbach.

“Precise analysis of string expressions.” SAS03
C FG => RG
f ’

: S — aS

K AEAR T -~ 3
ﬁ%@g‘g} : Pgm — D A A
g | Grammar of

S, 2 9 Generated Code
‘Two-Staged T—

Program /
[0
I CFG

Target Language

Grammar

Previous Works:

Yasuhiko Minamide. “Static approximation of dynamically generated web pages.” WWW’05

- oo z \

@C: .o
w o\ (O}
L Eval

vl om. fice Y
y B6® YL L)
KM

eI : Pgm — D

JRP ot
gjg&‘a é

; &
Quoil BERR 58 ulicor

‘Two-Staged

Program

CFG

S — aS
S — bA
A— ¢

A — cA

o

Grammar of

Generated Code

N
CFG=>R

Target Language

Grammar

Abstract Parsing
Abstraction using ParseStack

Key idea #1

slO

")/(s5) p— {1+, (1+3)+, (1+3+7)+, }

sl

A ParseStack represents a set of Code

20

Abstract Parsing
Abstraction using ParseStack

Key idea #2

1
[]
1
L1

P1

Code as ParseStack Transition Function

Code = P — P

Code

>

il

P>

21

Abstract Parsing

Abstraction using ParseStack
Key idea #2

] Code]

1 1

1 1
P1 P>

Code as ParseStack Transition Function

Code = P — P

Code concatenation

— — — —
— — = c-t — — =

ode

concat

Ci Ca

Function composition.
_ — — —
= = — — —
— —> = O |3 — ==
— — — —

C 22 Ci

Abstract Parsing
Abstraction using ParseStack

Abstraction Step

Y
ZCOde T 2P—>P

Abstract Parsing

AbstractParsing
. Pgm — (28 = 29)

23

2P R 2P

Abstract Parsing
Abstraction into ParseStack

) Parser s14:E->0rEE.
| ! = @
E |
Target Language s5:E->or.EE <or> s10:E->orE.E
Grammar » Ot ., iL
I v
s1:S->.E id\ s3:E->id.
_/fd ,l
’ }
s8:S-> E.
qusseill AbstractParsing
z!) .

BT,
»N»ﬁj;g%&

. Pgm — (27 — 29)

Program

24

Abstract Parsing
Abstraction into ParseStack

) Parser s14:E->orEE.
*
1 I D e
Target Language s5:E->or.EE <or s10:E->orE.E
Grammar » ot ., iL
I v
s1:S->.E id\ s3:E->id.
,/ é
' v
s8:S-> E.
(@ @\
(3 %m-gm g .
;!'I;{l%}'-ga‘i'%d AbstractParsing s10
N : Pgm — (28 — 27) Y s8 s5
Initial s| sl
ParseStack . \/)
Accepting Non-Accepting
Program ParseStack ParseStack

25

Chapter 11

Extended Abstract Parsing:
Constraint-based Analysis of Generated Code

26

Parsing in Abstract Parsing:

“Decision Procedure”

"

Grammar

7

1+2

Code

Pl
>\

27

Correct

Incorrect

Parsing in Modern Compiler:
“AST Builder”

Grammar

a def/ﬁ.b\'
, ﬁl/./\.
TN T

12/! if/'/\l\o +/\-\-
SN

N R

Correct/ + 1

1+2 _)4

Incorrect

Code

28

Extended Abstract Parsing
(Big Picture)

Grammar &
Semantic Action

{ WY
Correct/ 4 i
N

Pl
>\

1+2
Incorrect
Code
Extended
Abstract
Parser

29

Abstraction Plan

Abstract Parsing

— —
(8% (8%

Extended Abstract Parsmg

— —

Code % Past—PasT <— Po—Pco| «—— Pc Pc
2 2 2 2°¢ — 2

30

P A g7 = ParseStack with AST

: List of (ParsingState, Corresponding AST)

2 _@
3 _®
2 _®

Reduce

31

Bxo

P A g7 = ParseStack with AST

Algorithm 1 parse_action algorithm

1: procedure parse_action(p, t)

2: Stop <— the state on top of stack p
3: |if ACTION s;0p, t] = shift s then Add
4: push s onto the stack p LeafNode
5: return p
6: elde if ACTION [st0p,t] = reduce A — (3 then
7 pop | B3| symbol off the stack p
8: Stop <— the state on top of stack p
9: push GOTO|st0p, A] onto the stack p

10: return parse_action(p,t)

11: endif

12: end procedure Compose

NewNode

32

Shift s
S
—
Reduce A — 3
s’ = GOTO(t,A)
t
—_ —

P = ParseStack with Constraint

: List of (ParsingState, Corresponding Constraint)

1. Need Eaxtract : AST — C

2. Extract has to be compositional, which means
a constraint of an AST should be a composition

of constraints of subASTs.

example

Extract(&) =E xz‘mcz‘(@) + E xz‘mcz‘(@)

= [3, 3]

33

P = ParseStack with Constraint

Algorithm 1 parse_action algorithm

1: procedure parse_action(p, t)

2: Stop <— the state on top of stack p
3: |if ACTION s;0p, t] = shift s then Add
4: push s onto the stack p Constraint
5: return p
6: elde if ACTION [st0p,t] = reduce A — (3 then
7 pop | B3| symbol off the stack p
8: Stop <— the state on top of stack p
9: push GOTO|st0p, A] onto the stack p

10: return parse_action(p,t)

11: endif

12: end procedure Compose

New Constraint

34

Shift s
S
—
Reduce A — 3
s’ = GOTO(t,A)
t
—_ —

Compositional Constraints

® Uninitialized Local Variables Analysis
® Interval Value Analysis

® Simple Type Inference

35

Work in Progress

® Formalize Extended Abstract Parsing

v
gCode —— dPasT—Past

(87

v
«—
87

2P(;'—>PC

v
«—
87

oPc _y gfc

® Formalize Instantiation of the Three Examples

p Uninitialized Local Variables Analysis

p Interval Value Analysis

p Simple Type Inference

36

Thank You

