
Parameterized Model
for File System and LINQ

Parameterized Model
for File System and LINQ

Soonho Kong
Programming Research Laboratory

Seoul National University

Purpose

“Parameterized Model provides efficient and
effective solution to the test generation of the
program interacting with environment.”

2/40

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

Agenda

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

3/40

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

Agenda

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

4/40

Goal & Problem

Program
EnvironmentInteract

Goal : Test a program interacting with Environment
Problem : Fixed with the given Environment

Concept of Parameterized Model 5/40

Current Solution : Mocking

Environment

Program

MockInteract
MockInteract

MockInteract
MockInteract

MockInteract

Environment

Good: We can program the environment.
Bad:

1. You have to write it manually
2. One mock provides one behavior
3. You have no idea when you can stop
4. You might miss some corner cases 6/40

From Mocks to Models

§ Instead of providing fixed behavior, Give a
chance to Pex to explore and choose the
behavior.

§ Write a parameterized model for the
environments which are used widely and
frequently. So people can just take and use it.

Concept of Parameterized Model

§ Instead of providing fixed behavior, Give a
chance to Pex to explore and choose the
behavior.

§ Write a parameterized model for the
environments which are used widely and
frequently. So people can just take and use it.

7/40

A Model, Once and for All!
Mock
Return 1;

Program

Interact
Mock
return -1;

Mock
Return 0;

Mock
return 99;

Mock
Return -285;

Interact
Interact

Interact
Interact

Program
Pex it!

Parameterized Model

x = PexChoose<int>();
return x;

Parameterized Model

x = PexChoose<int>();
return x;

Concept of Parameterized Model

… x > 5 …

0, 10
8/40

Our Solution : Parameterized Model

Environment

Pex it!
Program Parameterized ModelParameterized Model

Concept of Parameterized Model

Environment

Good:
1. One model provides every possible

behavior.
2. You can share the model.
3. Test against model, not against you.

9/40

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

Agenda

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

10/40

Program Interacting with Physical File System

.NET
BCL

File,
Directory,

Path
Class

Program Physical
FileSystem

.NET
BCL

File,
Directory,

Path
Class

Interact Interact

Parameterized Model for File System 11/40

Injecting Dependency

.NET
BCL

File,
Directory,

Path
Class

Interact Interact

Abstract
File

SystemProgram Physical
FileSystem

.NET
BCL

File,
Directory,

Path
Class

Interact

Parameterized Model for File System 12/40

IFileSystem Interface

§ Abstract layer for the file system
§ Taken from
§ Containing 32 methods
– Create/Delete File
– Create/Delete Directory
– Read/Write/Append File Contents
– Retrieve All the Files/Directories in the Directory
– Get/Set File/Directory Attributes
– …

§ Abstract layer for the file system
§ Taken from
§ Containing 32 methods
– Create/Delete File
– Create/Delete Directory
– Read/Write/Append File Contents
– Retrieve All the Files/Directories in the Directory
– Get/Set File/Directory Attributes
– …

Parameterized Model for File System 13/40

PFileSystem

Interact

Pfile
System

Program

Interact

Pex

Parameterized Model for File System 14/40

PFileSystem

§ Parameterized model for the IFileSystem
§ Maintains list of information

about file system entity – file/directory.
§ Gives Pex a chance to choose its behavior.
§ 2529 Lines of Code, 5 Classes

§ Parameterized model for the IFileSystem
§ Maintains list of information

about file system entity – file/directory.
§ Gives Pex a chance to choose its behavior.
§ 2529 Lines of Code, 5 Classes

Parameterized Model for File System 15/40

PFileSystem – FileExists(path)

§ fs.FileExists(@“c:\users\t-sokong\report.txt”)

§ It would be true, false
§ If true,

§ what is the content of this file?
§ Parent directory “c:\users\t-sokong” must exist.
§ What about the date and attributes of this file?

Instance of PFileSystem

Parameterized Model for File System

§ fs.FileExists(@“c:\users\t-sokong\report.txt”)

§ It would be true, false
§ If true,

§ what is the content of this file?
§ Parent directory “c:\users\t-sokong” must exist.
§ What about the date and attributes of this file?

16/40

PFileSystem – FileExists(path)
// Create if possible

if (check) {
var call = PexChoose.FromCall(this);
if (call.ChooseValue<bool>("Create File \"" + path + "\" or Not")) {

// Ensure path to file
foreach (var dirPath in dirStack) {

if (DirectoryExists(dirPath))
continue;

CreateSingleDirectory(dirPath, false);
}
var fileData = call.ChooseValueNotNull<byte[]>("Contents in file " + path);
// Create File
if (info == null) {

info = new PFileInfo(ItemType.File, path, new List<byte>(fileData));
FileInfos.Add(info);

}
else

Ask Pex to Create or Not

Create a path to this file

Create only if possible
// Create if possible

if (check) {
var call = PexChoose.FromCall(this);
if (call.ChooseValue<bool>("Create File \"" + path + "\" or Not")) {

// Ensure path to file
foreach (var dirPath in dirStack) {

if (DirectoryExists(dirPath))
continue;

CreateSingleDirectory(dirPath, false);
}
var fileData = call.ChooseValueNotNull<byte[]>("Contents in file " + path);
// Create File
if (info == null) {

info = new PFileInfo(ItemType.File, path, new List<byte>(fileData));
FileInfos.Add(info);

}
else

Parameterized Model for File System

Ask Pex about
the Content of this file

Ask Pex about
Data, Attributes…

17/40

PFileSystem

DEMO

Parameterized Model for File System

DEMO

18/40

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

Agenda

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

19/40

The LINQ Project

§ Language Integrated Query(LINQ)
§ Released as a part of .NET framework 3.5
§ Provides a general/unified way to query data

Parameterized Model for LINQ 20/40

Why We Care About LINQ

IQueryable<T>Interact

Parameterized Model for LINQ

Program Data
LINQ

IQueryable<T>Interact

IQueryProvider Query
/Retrieve

21/40

How LINQ Works

§ IQueryable<T> Interface
– ElementType: Type of T

– Expression: Represents the Query it will perform when executed

– Provider: Describes how it executes the query

Parameterized Model for LINQ

§ IQueryable<T> Interface
– ElementType: Type of T

– Expression: Represents the Query it will perform when executed

– Provider: Describes how it executes the query

22/40

How LINQ Works

§ Standard Query Operators (43 Operators)
– Projection Operators: Select, SelectMany

– Restriction Operators: Where

– Grouping Operators: GroupBy

– Aggregate Operators: Max, Min, Sum, Average, Count, …

– Quantifier Operators: All, Any, Contains

– …

§ Defined in both Queryable and Enumerable
class as an extension method

Parameterized Model for LINQ

§ Standard Query Operators (43 Operators)
– Projection Operators: Select, SelectMany

– Restriction Operators: Where

– Grouping Operators: GroupBy

– Aggregate Operators: Max, Min, Sum, Average, Count, …

– Quantifier Operators: All, Any, Contains

– …

§ Defined in both Queryable and Enumerable
class as an extension method

23/40

How LINQ Works

§ Two types of Execution
– Deferred Execution: Return the IQueryable which contains

the expression to run. It is executed when it is actually
enumerated.

– Immediate Execution: Return the result immediately.

§ Two types of Execution
– Deferred Execution: Return the IQueryable which contains

the expression to run. It is executed when it is actually
enumerated.

– Immediate Execution: Return the result immediately.

Parameterized Model for LINQ

IQueryable<TSource> Where<TSource>(this IQueryable<TSource> source,
Expression<Func<TSource, bool>> predicate)

int Count<TSource>(this IQueryable<TSource> source)

24/40

User Writes LINQ Query

How LINQ Works

var orders = from c in customers
from o in c.Orders
where o.OrderDate >= new DateTime(2008, 11, 6)
select new { c.CustomerID, o.OrderID, o.OrderDate };

Type of customers is
IQueryable<Customer>

Compiler Generates an Equivalent Method Call

Parameterized Model for LINQ

customers.Where(c => (c.Region = "WA")).SelectMany(c => c.Orders, (c, o) => new
<>f__AnonymousType8`2(c = c, o = o)).Where(<>h__TransparentIdentifier1e =>
(<>h__TransparentIdentifier1e.o.OrderDate >=
value(Linq.Test.LinqTest+<>c__DisplayClass21).cutoffDate)).Select(<>h__TransparentIde
ntifier1e => new <>f__AnonymousTyped`2(CustomerID =
<>h__TransparentIdentifier1e.c.CustomerID, OrderID =
<>h__TransparentIdentifier1e.o.OrderID));

Standard Query Operator

Anonymous Type Generated by Compiler

25/40

Compiler Generates an Equivalent Method Call

How LINQ Works

customers.Where(c => (c.Region = "WA")).SelectMany(c => c.Orders, (c, o) => new
<>f__AnonymousType8`2(c = c, o = o)).Where(<>h__TransparentIdentifier1e =>
(<>h__TransparentIdentifier1e.o.OrderDate >=
value(Linq.Test.LinqTest+<>c__DisplayClass21).cutoffDate)).Select(<>h__TransparentIde
ntifier1e => new <>f__AnonymousTyped`2(CustomerID =
<>h__TransparentIdentifier1e.c.CustomerID, OrderID =
<>h__TransparentIdentifier1e.o.OrderID));

After it is executed, it returns an IQueryable<Customer> whose expression is

Expression of Returned IQueryable<Customer>

Parameterized Model for LINQ

After it is executed, it returns an IQueryable<Customer> whose expression is

() => value(Microsoft.Pex.Linq.PQueryable`1[Linq.Test.LinqTestData+Customer]).Where(c => (c.Region = "WA")).SelectMany(c => c.Orders, (c,
o) => new <>f__AnonymousType8`2(c = c, o = o)).Where(<>h__TransparentIdentifier1e => (<>h__TransparentIdentifier1e.o.OrderDate >=
value(Linq.Test.LinqTest+<>c__DisplayClass21).cutoffDate)).Select(<>h__TransparentIdentifier1e => new
<>f__AnonymousTyped`2(CustomerID = <>h__TransparentIdentifier1e.c.CustomerID, OrderID =
<>h__TransparentIdentifier1e.o.OrderID));

26/40

Expression of Returned IQueryable<Customer>
() => value(Microsoft.Pex.Linq.PQueryable`1[Linq.Test.LinqTestData+Customer]).Where(c =>

(c.Region = "WA")).SelectMany(c => c.Orders, (c, o) => new <>f__AnonymousType8`2(c =
c, o = o)).Where(<>h__TransparentIdentifier1e =>
(<>h__TransparentIdentifier1e.o.OrderDate >=
value(Linq.Test.LinqTest+<>c__DisplayClass21).cutoffDate)).Select(<>h__TransparentIde
ntifier1e => new <>f__AnonymousTyped`2(CustomerID =
<>h__TransparentIdentifier1e.c.CustomerID, OrderID =
<>h__TransparentIdentifier1e.o.OrderID));

How LINQ Works

Parameterized Model for LINQ

When this IQueryable is enumerated, this expression is passed
to the IQueryProvider and it performs the actual query

IQueryProvider
Perform the Query

And Return the Result

27/40

Big Picture: Pex.LINQ

PQueryable<T>Interact
Query

/Retrieve

Array
Generated By

Parameterized Model for LINQ

Program LINQ

PQueryable<T>Interact
Query

/Retrieve

Pex

28/40

PQueryable<T>

§ Implementation of IQueryable<T>
§ Instantiated from AsPQueryable method

IQueryable<TElement> AsPQueryable<TElement>(this IEnumerable<TElement> source)

Pex Generates
an Array of Student

Parameterized Model for LINQ

§ Implementation of IQueryable<T>
§ Instantiated from AsPQueryable method

IQueryable<TElement> AsPQueryable<TElement>(this IEnumerable<TElement> source)

public IQueryable<Student> GetStudents()
{

var data = PexChoose.FromCall(this)
.ChooseValueNotNull<Student[]>("students");

PexAssume.AreElementsNotNull(data);
return data.AsPQueryable();

}

Pex Generates
an Array of Student

Converted to
PQueryable<Student>

29/40

PQueryable<T>

§ It also Implements IQueryProvider interface
§ When executing an Expression,

1. Traverse the expression and switch all query
operator methods defined in Queryable class
with the same one defined in Enumerable class.

2. Compile the switched Expression
3. Invoke It!

Expression of Returned IQueryable<Customer>
() => value(Microsoft.Pex.Linq.PQueryable`1[Linq.Test.LinqTestData+Customer]).Where(c =>

(c.Region = "WA")).SelectMany(c => c.Orders, (c, o) => new <>f__AnonymousType8`2(c =
c, o = o)).Where(<>h__TransparentIdentifier1e =>
(<>h__TransparentIdentifier1e.o.OrderDate >=
value(Linq.Test.LinqTest+<>c__DisplayClass21).cutoffDate)).Select(<>h__TransparentIde
ntifier1e => new <>f__AnonymousTyped`2(CustomerID =
<>h__TransparentIdentifier1e.c.CustomerID, OrderID =
<>h__TransparentIdentifier1e.o.OrderID));

Parameterized Model for LINQ

§ It also Implements IQueryProvider interface
§ When executing an Expression,

1. Traverse the expression and switch all query
operator methods defined in Queryable class
with the same one defined in Enumerable class.

2. Compile the switched Expression
3. Invoke It!

() => value(Microsoft.Pex.Linq.PQueryable`1[Linq.Test.LinqTestData+Customer]).Where(c =>
(c.Region = "WA")).SelectMany(c => c.Orders, (c, o) => new <>f__AnonymousType8`2(c =
c, o = o)).Where(<>h__TransparentIdentifier1e =>
(<>h__TransparentIdentifier1e.o.OrderDate >=
value(Linq.Test.LinqTest+<>c__DisplayClass21).cutoffDate)).Select(<>h__TransparentIde
ntifier1e => new <>f__AnonymousTyped`2(CustomerID =
<>h__TransparentIdentifier1e.c.CustomerID, OrderID =
<>h__TransparentIdentifier1e.o.OrderID));

30/40

Issue 1

§ Problem: ExpressionCompiler uses “Lightweight”
Code Generation which Pex cannot monitor and
instrument
§ “Limitation” of the CLR – Won’t Fix.

§ Solution: Substitute ExpressionCompiler to create
a delegate using “Heavyweight” Code Generation

Parameterized Model for LINQ

§ Problem: ExpressionCompiler uses “Lightweight”
Code Generation which Pex cannot monitor and
instrument
§ “Limitation” of the CLR – Won’t Fix.

§ Solution: Substitute ExpressionCompiler to create
a delegate using “Heavyweight” Code Generation

31/40

Issue 2

§ Problem: With “Lightweight” Code Generation
we could skip the “Visibility Check”. We cannot skip
it when we use “Heavyweight” Code Generation.

§ Solution: Traverse Expression and change any
access to the private class, field, property, method,
and constructor into the equivalent method call
using reflection.

Parameterized Model for LINQ

§ Problem: With “Lightweight” Code Generation
we could skip the “Visibility Check”. We cannot skip
it when we use “Heavyweight” Code Generation.

§ Solution: Traverse Expression and change any
access to the private class, field, property, method,
and constructor into the equivalent method call
using reflection.

Example
obj.PrivateField PrivateFieldInfo.GetValue(obj)

32/40

Issue 3

§ Problem: Pex iterates dynamic symbolic execution and
it leads to repeated creation of the same code generated
method. It generates redundant test cases.

§ Solution: Implement ExpressionComparer and Create
new method only if it is new lambda expression.

Expression of Returned IQueryable<Customer>Expression of Returned IQueryable<Customer>
() => value(Microsoft.Pex.Linq.PQueryable`1[Linq.Test.LinqTestData+Customer]).Where(c =>

(c.Region = "WA")).SelectMany(c => c.Orders, (c, o) => new <>f__AnonymousType8`2(c =
c, o = o)).Where((<>h__TransparentIdentifier1e => <>h__TransparentIdentifier1e =>
(<>h__TransparentIdentifier1e.o.OrderDate >= (<>h__TransparentIdentifier1e.o.OrderDate >=
value(value(Linq.Test.LinqTestLinq.Test.LinqTest+<>c__DisplayClass21).+<>c__DisplayClass21).cutoffDatecutoffDate)).Select(<>h__Tran
sparentIdentifier1e => new <>f__AnonymousTyped`2(CustomerID =
<>h__TransparentIdentifier1e.c.CustomerID, OrderID =
<>h__TransparentIdentifier1e.o.OrderID));

Keep Creating New Code
for This

Parameterized Model for LINQ

§ Problem: Pex iterates dynamic symbolic execution and
it leads to repeated creation of the same code generated
method. It generates redundant test cases.

§ Solution: Implement ExpressionComparer and Create
new method only if it is new lambda expression.

Expression of Returned IQueryable<Customer>
() => value(Microsoft.Pex.Linq.PQueryable`1[Linq.Test.LinqTestData+Customer]).Where(c =>

(c.Region = "WA")).SelectMany(c => c.Orders, (c, o) => new <>f__AnonymousType8`2(c =
c, o = o)).Where((<>h__TransparentIdentifier1e => <>h__TransparentIdentifier1e =>
(<>h__TransparentIdentifier1e.o.OrderDate >= (<>h__TransparentIdentifier1e.o.OrderDate >=
value(value(Linq.Test.LinqTestLinq.Test.LinqTest+<>c__DisplayClass21).+<>c__DisplayClass21).cutoffDatecutoffDate)).Select(<>h__Tran
sparentIdentifier1e => new <>f__AnonymousTyped`2(CustomerID =
<>h__TransparentIdentifier1e.c.CustomerID, OrderID =
<>h__TransparentIdentifier1e.o.OrderID));

Keep Creating New Code
for This

33/40

Pex.LINQ

§ 1832 Lines of Code
§ 9 Classes
§ Substitution

– 3 Methods in System.Linq.ExpressionCompiler
– 1 Method in

System.Runtime.CompilerServices.ExecutionScope

Parameterized Model for LINQ

§ 1832 Lines of Code
§ 9 Classes
§ Substitution

– 3 Methods in System.Linq.ExpressionCompiler
– 1 Method in

System.Runtime.CompilerServices.ExecutionScope

34/40

Pex.LINQ

DEMODEMO

Parameterized Model for LINQ 35/40

Evaluation Result

§ ExpressionCompilerTest suite
– Covers every type of LINQ expression.
– 61 Tests, 155 Generated Tests, 100% dynamic coverage

§ LINQ101SampleTest suite
– LINQ 101 Sample from the official LINQ website
– More queries from the Standard Query Operators

document
– Covers every type of the Standard Query Operators

Parameterized Model for LINQ 36/40

§ ExpressionCompilerTest suite
– Covers every type of LINQ expression.
– 61 Tests, 155 Generated Tests, 100% dynamic coverage

§ LINQ101SampleTest suite
– LINQ 101 Sample from the official LINQ website
– More queries from the Standard Query Operators

document
– Covers every type of the Standard Query Operators

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

Agenda

1. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ
4. Future of Parameterized Model

37/40

Future Work

§ Modeling more and more environment parts
§ Introducing new interfaces that abstract “static”

(untestable) APIs
§ Investigate how to make it easier to write such

models

§ Modeling more and more environment parts
§ Introducing new interfaces that abstract “static”

(untestable) APIs
§ Investigate how to make it easier to write such

models

Future of Parameterized Model 38/40

Future Testing Revolution

§ Provide ability to “Save” initial environment model
state to reality
• Then generated tests can not only be executed against

model, but also against reality
• Then PUTs give rise to unit tests and integration tests!
• Also useful to validate models against reality

§ Same Test for unit test and integration test!

§ Provide ability to “Save” initial environment model
state to reality
• Then generated tests can not only be executed against

model, but also against reality
• Then PUTs give rise to unit tests and integration tests!
• Also useful to validate models against reality

§ Same Test for unit test and integration test!

Future of Parameterized Model 39/40

Thank You!Thank You!

40/40

