Parameterized Model
for File System and LINQ

Soonho Kong
Programming Research Laboratory
Seoul National University

Purpose

“Parameterized Model provides efficient and
effective solution to the test generation of the
program interacting with environment.”

Agenda

|. Concept of Parameterized Model
2. Parameterized Model for File System
3. Parameterized Model for LINQ

4. Future of Parameterized Model

Agenda

I. Concept of Parameterized Model

Goal & Problem

Program

Goal : Test a program interacting with Environment
Problem : Fixed with the given Environment

Concept of Parameterized Model 5/40

Current Solution : Mocking

(2 P NV Y
(2 P NV Y
(R NV N

(R I NV N

Program Interact

Good: We can program the environment.
Bad.:
|. You have to write it manually
2. One mock provides one behavior
3. You have no idea when you can stop
4. You might miss some corner cases ”

From Mocks to Models

* |nstead of providing fixed behavior, Give a
chance to Pex to explore and choose the
behavior.

" Write a parameterized model for the
environments which are used widely and
frequently. So people can just take and use it.

Concept of Parameterized Model

A Model, Once and for All!

s

Program

(R P NV
(R I NV N
(R NV N

(R NV N

Interact

Mock

Return 1;

Mock

return 99;

Mock

Return -285;

Return O;

~

Y4

Program

(&

Parameterized Model

X = PexChoose<int>();
return Xx;

Concept of Parameterized Model

8/40

Our Solution : Parameterized Model

Parameterized Model
o &)

Good:
|. One model provides every possible

behavior.
2. You can share the model.
3. Test against model, not against you.

Concept of Parameterized Model 9/40

Agenda

2. Parameterized Model for File System

Program Interacting with Physical File System

NET
BCL

File,
Directory,
Path
Class

Interact Physical
NS

Program Interact

Parameterized Model for File System | 1/40

Injecting Dependency

Interact

Program

Parameterized Model for File System

Abstract
File
System

NET Interact

BCL

File,

Directory,
Path
Class

Interact

Physical
FileSystem

12/40

IFileSystem Interface

" Abstract layer for the file system
= Taken from [ESEEEEES

Open Source Project Communit;

* Containing 32 methods
— Create/Delete File
— Create/Delete Directory
— Read/Write/Append File Contents
— Retrieve All the Files/Directories in the Directory
— Get/Set File/Directory Attributes

Parameterized Model for File System 13/40

PFileSystem

Interact

Program

Interact

Parameterized Model for File System 1 4/40

PFileSystem

* Parameterized model for the IFileSystem

= Maintains list of information
about file system entity — file/directory.

= Gives Pex a chance to choose its behavior.
= 2529 Lines of Code, 5 Classes

Parameterized Model for File System

PFileSystem — FileExists(path)

= fs.FileExists(@*“c:\users\t-sokong\report.txt”)

[ﬁ Instance of PFileSystem

= |t would be true, false

" |f true,
» what is the content of this file?
" Parent directory “c:\users\t-sokong” must exist.
" What about the date and attributes of this file?

Parameterized Model for File System

PFileSystem — FileExists(path)

/I Create if possibl

f (checld { Create only if possible Ask Pex to Create or Not
var call = PexChoose.FromCall(this);

if (call. ChooseValue<bool>("Create File \"" + path + "\" or Not")) {
Il Ensure path to file
foreach (var dirPath in dirStack) {
if (DirectoryExists(dirPath)) <:| Create a path to this file
continue;
CreateSingleDirectory(dirPath, false);

}

var fileData = call.ChooseValueNotNull<byte[]>("Contents in file " + path);

{/ CFreat_e_FHe % Ask Pex about

if (info == null) { the Content of this file
info = new PFilelnfo(ltemType.File, path, new List<byte>(fileData));

FileInfos.Add(info); Aqlc Pex about

} Data, Attributes...
else

Parameterized Model for File System 1 7/40

PFileSystem

DEMO

Parameterized Model for File System

Agenda

3. Parameterized Model for LINQ

The LINQ Project

" Language Integrated Query(LINQ)
" Released as a part of .NET framework 3.5

" Provides a general/unified way to query data

Parameterized Model for LINQ

Why We Care About LINQ

Interact IQueryable<T>

Program

|QueryProvider Query
/Retrieve

Parameterized Model for LINQ 21/40

How LINQ Works

" |Queryable<T> Interface
— ElementType: Type of T
— Expression: Represents the Query it will perform when executed

— Provider: Describes how it executes the query

Parameterized Model for LINQ

How LINQ Works

» Standard Query Operators (43 Operators)

— Projection Operators: Select, SelectMany

— Restriction Operators: Where

— Grouping Operators: GroupBy

— Aggregate Operators: Max, Min, Sum,Average, Count, ...
— Quantifier Operators: All, Any, Contains

" Defined in both Queryable and Enumerable
class as an extension method

Parameterized Model for LINQ

How LINQ Works

" Two types of Execution

— Deferred Execution: Return the IQueryable which contains
the expression to run. It is executed when it is actually
enumerated.

IQueryable<TSource> Where<TSource>(this IQueryable<TSource> source,
Expression<Func<TSource, bool>> predicate)

— Immediate Execution: Return the result immediately.

int Count<TSource>(this IQueryable<TSource> source)

Parameterized Model for LINQ 24/40

How LINQ Works

(. Type of customers is \
User Writes LIN uer
QQuery IQueryable<Customer>
var orders = from c in customers

from o in c.Orders

where o.0rderDate >= new DateTime(2008, 11, 6)
select new { c.CustomerID, o.0OrderID, o.OrderDate };

g J

Standard Query Operator

SelectMany
Where

Select

Anonymous Type Generated by Compiler

Parameterized Model for LINQ 25/40

How LINQ Works

SelectMany
Where

After it is executed, it returns an |Queryable<Customer> whose expression is

SelectMany
Where

Select

Parameterized Model for LINQ 26/40

How LINQ Works

SelectMany
Where

Select

When this |IQueryable is enumerated, this expression is passed

to the IQueryProvider and it performs the actual query

Perform the Query

|QueryProvider And Return the Result

Parameterized Model for LINQ 27/40

Big Picture: Pex.LINQ

Query
/Retrieve

Interact PQueryable<T>

Array
Generated By

>

Parameterized Model for LINQ 28/40

Program

PQueryable<T>

" Implementation of IQueryable<T>
" |nstantiated from AsPQueryable method

IQueryable<TElement> AsPQueryable<TElement>(this IEnumerable<TElement> source)

Pex Generates
an Array of Student

//,;ublic IQueryable<Student> GetStudents()
{

var data = PexChoose.FromCall(this)
.ChooseValueNotNull<Student[]>("students™);

PexAssume.AreElementsNotNull(data);

return data.AsPQueryable();

Converted to
\ PQueryable<Student> j

Parameterized Model for LINQ 29/40

PQueryable<T>

" |t also Implements |IQueryProvider interface

* When executing an Expression

SelectMany

Where

Parameterized Model for LINQ 30/40

Issue |

" Problem: ExpressionCompiler uses “Lightweight”
Code Generation which Pex cannot monitor and
instrument

= “Limitation” of the CLR —Won’t Fix.

= Solution: Substitute ExpressionCompiler to create
a delegate using “Heavyweight” Code Generation

Parameterized Model for LINQ

Issue 2

* Problem: With “Lightweight” Code Generation
we could skip the “Visibility Check”.VWe cannot skip
it when we use “Heavyweight” Code Generation.

" Solution: Traverse Expression and change any

access to the private class, field, property, method,
and constructor into the equivalent method call
using reflection.

Example
obj.PrivateField ‘ PrivateFieldInfo.GetValue(obj)

\

Parameterized Model for LINQ

Issue 3

* Problem: Pex iterates dynamic symbolic execution and
it leads to repeated creation of the same code generated
method. It generates redundant test cases.

Where
SelectMany
Where

Select

» Solution: Implement ExpressionComparer and Create
new method only if it is new lambda expression.

Parameterized Model for LINQ 33/40

Pex.LINQ

= |832 Lines of Code
= 9 Classes

= Substitution

— 3 Methods in System.Ling.ExpressionCompiler

— | Method in
System.Runtime.CompilerServices.ExecutionScope

Parameterized Model for LINQ

Pex.LINQ

DEMO

Parameterized Model for LINQ

Evaluation Result

* ExpressionCompilerTest suite
— Covers every type of LINQ expression.

— 61 Tests, |55 Generated Tests, 100% dynamic coverage

* LINQIOISampleTest suite
— LINQ 101l Sample from the official LINQ website

— More queries from the Standard Query Operators
document

— Covers every type of the Standard Query Operators

Parameterized Model for LINQ

Agenda

4. Future of Parameterized Model

Future Work

* Modeling more and more environment parts

" Introducing new interfaces that abstract “static”
(untestable) APIs

" Investigate how to make it easier to write such
models

Future of Parameterized Model

Future Testing Revolution

* Provide ability to “Save” initial environment model
state to reality

* Then generated tests can not only be executed against
model, but also against reality

* Then PUTs give rise to unit tests and integration tests!

* Also useful to validate models against reality

= Same Test for unit test and integration test!

Future of Parameterized Model

Thank You!

